1 Introduction

A Banach couple is two Banach spaces \(\mathcal{A}\) and \(\mathcal{B}\) topologically and algebraically imbedded in a separated topological linear space, and denoted by \((\mathcal{A},\mathcal{B})\). The Banach space \(\mathcal{E}\) is called intermediate for the spaces of the Banach couple \((\mathcal{A},\mathcal{B})\) if the imbedding \(\mathcal{A} \cap\mathcal{B}\subset\mathcal{E} \subset\mathcal{A}+\mathcal{B}\) holds.

Let \((\mathcal{A},\mathcal{B})\) and \((\mathcal{C},\mathcal{D})\) be two Banach couples. A linear mapping T acting from the space \(\mathcal{A}+\mathcal{B}\) into \(\mathcal{C}+\mathcal {D}\) is said to be a bounded operator from \((\mathcal{A},\mathcal {B})\) into \((\mathcal{C},\mathcal{D})\) if the restrictions of T to \(\mathcal{A}\) and \(\mathcal{B}\) are bounded operators from \(\mathcal{A}\) into \(\mathcal{C}\) and \(\mathcal{B}\) into \(\mathcal{D}\), respectively.

Let \(L(\mathcal{A}\mathcal{B},\mathcal{C}\mathcal{\mathcal{D}})\) be the linear space of all bounded operators from \((\mathcal {A},\mathcal{B})\) into \((\mathcal{C},\mathcal{D})\). Consider,

$${ \Vert T \Vert }_{ L(\mathcal{A}\mathcal{B},\mathcal{C}\mathcal{D}) } = \max{ \bigl\{ { \Vert T \Vert }_{ \mathcal{A}\rightarrow\mathcal{B} } , { \Vert T \Vert }_{ \mathcal{C}\rightarrow\mathcal{D} } \bigr\} }. $$

Note that \((L(\mathcal{A}\mathcal{B},\mathcal{C}\mathcal{\mathcal {D}}), \Vert\Vert)\) is a Banach space.

Definition 1.1

([1])

Let \((\mathcal{A},\mathcal{B})\) and \((\mathcal{C},\mathcal{D})\) be two Banach couples, and \(\mathcal{E}\) (respectively \(\mathcal{F}\)) be intermediate for the spaces of the Banach couple \((\mathcal {A},\mathcal{B})\) (respectively \((\mathcal{C},\mathcal{D})\)). The triple \((\mathcal{A},\mathcal{B},\mathcal{E})\) is called an interpolation triple, relative to \((\mathcal{C},\mathcal{D},\mathcal {F})\), if every bounded operator from \((\mathcal{A},\mathcal{B})\) to \((\mathcal {C},\mathcal{D})\) maps \(\mathcal{E}\) to \(\mathcal{F}\).

A triple \((\mathcal{A},\mathcal{B},\mathcal{E})\) is said to be an interpolation triple of type α (\(0 \leq\alpha\leq1\)) relative to \((\mathcal{C},\mathcal{D},\mathcal {F})\) if it is an interpolation triple and the following

$${ \Vert T \Vert }_{ \mathcal{E} \rightarrow\mathcal{F} }\leq c { \Vert T \Vert }^{\alpha}_{ \mathcal{A} \rightarrow\mathcal{B} } \cdot{ \Vert T \Vert }^{1 -\alpha}_{ \mathcal{C} \rightarrow\mathcal{D} }, $$

holds for some constant c.

Inspired by the definition above, the interpolative Kannan contraction has been described in [2] as follows: Given a metric space \((X,d)\), the mapping \(\varUpsilon:X\rightarrow X\) is called an interpolative Kannan contraction if

$$ d ( \varUpsilon\theta,\varUpsilon\vartheta ) \leq\lambda \bigl[ d ( \theta,\varUpsilon\theta ) \bigr]^{\alpha} \cdot \bigl[d (\vartheta, \varUpsilon \vartheta ) \bigr]^{1-\alpha}, $$
(1.1)

for all \(\theta, \vartheta\in X\) with \(\theta\neq\varUpsilon\theta\), where \(\lambda\in[0,1)\) and \(\alpha\in(0,1)\). The main result in [2] is stated as follows.

Theorem 1.2

([2])

Let \(( X,d ) \)be a complete metric space andϒbe an interpolative Kannan type contraction. Thenϒpossesses a unique fixed point inX.

Karapınar, Agarwal and Aydi [3] gave a counter-example to Theorem 1.2, showing that the fixed point may be not unique. The following result is the corrected version of Theorem 1.2.

Theorem 1.3

([3])

Letϒbe a self-mapping on the complete metric space \(( X,d )\). Suppose that

$$d (\varUpsilon\theta,\varUpsilon\vartheta ) \leq\lambda \bigl[ d (\theta, \varUpsilon \theta ) \bigr]^{\alpha} \cdot \bigl[d (\vartheta,\varUpsilon \vartheta ) \bigr]^{1-\alpha}, $$

for all \(\theta, \vartheta\in X\setminus \operatorname{Fix}(\varUpsilon)\), where \(\operatorname{Fix}(\varUpsilon)=\{\eta\in X, \varUpsilon\eta=\eta\}\). Then there is a unique fixed point ofϒ.

On the other hand, Ćirić–Reich–Rus [4,5,6,7,8,9] generalized the Banach contraction principle [10].

Theorem 1.4

Let \(( X,d ) \)be a complete metric space. Let \(\varUpsilon :X\rightarrow X\)so that the following:

$$d ( \varUpsilon\theta,\varUpsilon\vartheta ) \leq\alpha d(\theta,\vartheta)+ \beta d( \theta,\varUpsilon\theta)+\gamma d(\vartheta,\varUpsilon \vartheta)$$

holds, for all \(\theta, \vartheta\in X\), where \(\alpha,\beta,\gamma \geq0\)such that \(\alpha+\beta+\gamma<1\). Thenϒadmits a unique fixed point.

Recently, Karapinar et al. [3] initiated the notion of interpolative Ćirić–Reich–Rus type contractions.

Definition 1.5

([11])

Let \(( X,d ) \) be a metric space. We say that the self-mapping ϒ on X is an interpolative Ćirić–Reich–Rus type contraction if there are \(\lambda\in [0,1)\) and \(\alpha,\beta>0\) with \(\alpha+\beta<1\) so that

$$ d ( \varUpsilon\theta,\varUpsilon\vartheta ) \leq\lambda \bigl[ d ( \theta,\vartheta ) \bigr]^{\alpha} \cdot \bigl[ d (\theta,\varUpsilon \theta ) \bigr]^{\beta} \cdot \bigl[d (\vartheta,\varUpsilon\vartheta ) \bigr]^{1-\alpha-\beta},$$
(1.2)

for all \(\theta, \vartheta\in X\setminus\operatorname{Fix}(\varUpsilon)\).

Theorem 1.6

([3])

An interpolative Ćirić–Reich–Rus type contraction mapping on the complete metric space \(( X,d ) \)possesses a fixed point inX.

For other results dealing with interpolate approach, see [11,12,13,14]. On the other hand in 2012, Wardowski [15] gave a new generalization of the Banach contraction by introducing the notion of F-contractions. For related results, see [16,17,18,19,20]. Throughout this paper, \(\mathbb{N}\), \(\mathbb{R}\) and \(\mathbb{R}^{+}\) stand for the set of all natural numbers, real numbers and positive real numbers, respectively. \(\mathcal{F}\) represents the collection of all functions \(F:(0,\infty)\to\mathbb{R}\) so that:

  1. (F1)

    F is strictly increasing.

  2. (F2)

    For each sequence \(\{\alpha_{n}\}\) in \((0,\infty)\), \(\lim_{n\to\infty}\alpha_{n}= 0\) iff \(\lim_{n\to\infty}F(\alpha_{n})=-\infty\).

  3. (F3)

    There is \(k\in(0,1)\) so that \(\lim_{\alpha\to 0^{+}}\alpha^{k} F(\alpha)=0\).

Definition 1.7

([15])

Let \((X,d)\) be a metric space. A mapping \(\varUpsilon:X\rightarrow X\) is said to be an F-contraction if there exist \(\tau>0\) and \(F\in \mathcal{F}\) such that for all \(\varOmega,\omega\in X\),

$$\begin{aligned} d(\varUpsilon\varOmega,\varUpsilon\omega)>0\quad\Longrightarrow \quad\tau +F \bigl(d( \varUpsilon\varOmega,\varUpsilon\omega) \bigr)\leq F \bigl(d(\varOmega,\omega) \bigr). \end{aligned}$$
(1.3)

Example 1.8

([15])

The functions \(F:(0,\infty)\to\mathbb{R}\) defined by

  1. (1)

    \(F(\alpha)=\ln\alpha\),

  2. (2)

    \(F(\alpha)=\ln\alpha+\alpha\),

  3. (3)

    \(F(\alpha)=\frac{-1}{\sqrt{\alpha}}\),

  4. (4)

    \(F(\alpha)=\ln(\alpha^{2}+\alpha)\),

belong to \(\mathcal{F}\).

Wardowski [15] introduced a new proper generalization of Banach contraction as follows.

Theorem 1.9

([15])

Let \((X,d)\)be a complete metric space and let \(T:X\rightarrow X\)be anF-contraction. Thenϒhas a unique fixed point, sayz, inXand for any point \(\sigma\in X\), the sequence \(\{\varUpsilon^{j}\sigma\}\)converges toz.

By using the approach of Wardowski [15] (for single and multi-valued mappings), we initiate the concept of extended interpolative Ćirić–Reich–Rus type contractions. Some related fixed point results are also presented.

2 Main results

First, we introduce the notion of extended interpolative Ćirić–Reich–Rus typeF-contractions.

Definition 2.1

Let \(( X,d ) \) be a metric space. We say that the self-mapping ϒ on X is an extended interpolative Ćirić–Reich–Rus typeF-contraction if there exist \(\alpha ,\beta\in(0,1)\) with \(\alpha+\beta<1\), \(\tau>0\) and \(F\in\mathcal {F}\) such that

$$ \tau+F \bigl(d ( \varUpsilon\theta,\varUpsilon\vartheta ) \bigr) \leq \alpha F \bigl(d (\theta,\vartheta ) \bigr)+ \beta F \bigl( d ( \theta ,\varUpsilon\theta ) \bigr)+ (1-\alpha-\beta) F \bigl(d (\vartheta, \varUpsilon\vartheta ) \bigr), $$
(2.1)

for all \(\theta, \vartheta\in X\setminus\operatorname{Fix}(\varUpsilon)\) with \(d ( \varUpsilon\theta,\varUpsilon\vartheta )>0\).

Theorem 2.2

An extended interpolative Ćirić–Reich–Rus typeF-contraction self-mapping on a complete metric space admits a fixed point inX.

Proof

Starting from \(\theta_{0}\in X\), consider \(\{\theta_{n}\}\), given as \(\theta_{n}=T^{n}(\theta_{0})\) for each positive integer n. If there is \(n_{0}\) so that \(\theta_{n_{0}}=\theta_{n_{0}+1}\), then \(\theta _{n_{0}}\) is a fixed point of T. Suppose that \(\theta_{n}\neq\theta _{n+1}\) for all \(n\geq0\). Taking \(\theta= \theta_{n}\) and \(\vartheta=\theta_{n-1}\) in (2.1), one writes

$$ \begin{aligned}[b] &\tau+F\bigl(d ( \theta_{n+1},\theta_{n} )\bigr) \\ &\quad=\tau+F\bigl( d( \varUpsilon \theta_{n},\varUpsilon\theta_{n-1})\bigr) \\ &\quad\leq\alpha F (d (\theta_{n},\theta_{n-1} ) +\beta F \bigl(d(\theta_{n},\varUpsilon\theta_{n} )\bigr) +(1-\alpha- \beta) F\bigl(d (\theta_{n-1},\varUpsilon\theta _{n-1} )\bigr) \\ &\quad= \alpha F\bigl(d (\theta_{n},\theta_{n-1} )\bigr) +\beta F \bigl(d (\theta_{n}, \theta_{n+1} )\bigr) + (1-\alpha-\beta) F \bigl(d (\theta_{n-1}, \theta_{n} )\bigr). \end{aligned} $$
(2.2)

Suppose that \(d (\theta_{n-1}, \theta_{n} )< d ( \theta_{n},\theta_{n+1} ) \) for some \(n\geq1\). The inequality (2.2) yields

$$ \tau+ F \bigl(d (\theta_{n},\theta_{n+1} ) \bigr) \leq F \bigl(d (\theta _{n},\theta_{n+1} ) \bigr), $$
(2.3)

which is a contradiction. Therefore, \(d ( \theta_{n},\theta _{n+1} ) \leq d (\theta_{n-1}, \theta_{n} ) \) for all \(n\geq1\). Again from (2.2), we get

$$ \tau+ F \bigl(d (\theta_{n},\theta_{n+1} ) \bigr) \leq F \bigl(d (\theta _{n-1},\theta_{n} ) \bigr). $$
(2.4)

Consequently

$$ F \bigl(d (\theta_{n},\theta_{n+1} ) \bigr) \leq F \bigl(d (\theta _{n-1},\theta_{n} ) \bigr)-\tau\leq \cdots \leq F \bigl(d (\theta _{0},\theta_{1} ) \bigr)-n \tau, $$
(2.5)

for all \(n\geq1\). Therefore \(d(\theta_{n},\theta_{n+1})< d(\theta_{n-1},\theta_{n})\) for all \(n\geq1\). Taking \(n\to\infty\) in (2.5) yields \(\lim_{n \to\infty} F(d (\theta_{n},\theta _{n+1} ))=-\infty\). From (F2), we get \(\lim_{n \to\infty} d (\theta_{n},\theta _{n+1} )=0 \). Put \(\gamma_{n}=d(\theta_{n},\theta_{n+1})\). Thus, \(\lim_{n \to\infty}\gamma_{n}=0 \). Then for any \(n\in \mathbb{N}\), we have \({\gamma_{n}}^{k} (F(\gamma_{n})-F(\gamma_{0}))\leq -{\gamma_{n}}^{k} n\tau<0\). Thus, \(\lim_{n\to\infty }{\gamma_{n}}^{k} n=0\). So, there is \(N\in\mathbb{N}\) so that \(\gamma _{n}\leq\frac{1}{n^{\frac{1}{k}}}\) for all \(n\geq N\). Now, for any \(m,n\in\mathbb{N}\) with \(m>n\), we get

$$d(\theta_{n},\theta_{m})\leq \sum _{i=n}^{m-1}d(\theta _{i}, \theta_{i+1})= \sum_{i=n}^{m-1} \gamma_{i}\leq \sum_{i=n}^{m-1} \frac{1}{i^{\frac{1}{k}}}. $$

Since the last term of the above inequality tends to zero as \(m,n\to \infty\), we have \(d(\theta_{n},\theta_{m}) \to0\) as \(m,n\to\infty\), that is, \(\{\theta_{n}\}\) is a Cauchy sequence, and so \(\theta_{n}\to \theta\) as \(n\rightarrow\infty\). Suppose to the contrary \(\theta \neq\varUpsilon\theta\).

We consider two cases.

Case 1: There is a subsequence \(\{\theta_{n_{k}}\}\) such that \(\varUpsilon\theta_{n_{k}}=\varUpsilon\theta\) for all \(k\in\mathbb {N}\). In this case,

$$d(\theta,\varUpsilon\theta)=\lim_{k\rightarrow\infty} d(\theta _{n_{k}+1}, \varUpsilon\theta)= \lim_{k\rightarrow\infty} d(\varUpsilon \theta_{n_{k}}, \varUpsilon\theta)=0. $$

Case 2: There is a natural number N such that \(\varUpsilon\theta_{n}\neq\varUpsilon\theta\) for all \(n\geq N\). In this case, applying (2.1), for \(\theta =\theta_{n}\) and \(\vartheta=\theta\), we have

$$ \begin{aligned}[b] \tau+F \bigl(d (\theta_{n+1}, \varUpsilon\theta ) \bigr)&= \tau +F \bigl(d ( \varUpsilon\theta_{n}, \varUpsilon \theta ) \bigr) \\ & \leq\alpha F \bigl( d (\theta_{n},\theta ) \bigr)+\beta F \bigl( d ( \theta_{n},\theta_{n+1} ) \bigr) +(1-\alpha-\beta) F \bigl(d ( \theta,\varUpsilon\theta ) \bigr). \end{aligned} $$
(2.6)

Letting \(n\to\infty\) in the inequality (2.6), we find that \(\lim_{n\to\infty} F(d(\theta_{n+1},\varUpsilon\theta ))=-\infty\) and so \(\lim_{n\to\infty} d(\theta _{n+1},\varUpsilon\theta)=0\). Therefore,

$$d(\theta,\varUpsilon\theta)=\lim_{n\to\infty} d(\theta _{n+1}, \varUpsilon\theta)=\lim_{n\to\infty} d(\varUpsilon \theta _{n}, \varUpsilon\theta)=0. $$

Thus, \(d(\theta,\varUpsilon\theta)=0\) and so \(\theta=\varUpsilon\theta \). Hence, \(\varUpsilon\theta=\theta\). □

We illustrate Theorem 2.2 by the following examples.

Example 2.3

let \(X=\{-1,0,1\}\) be endowed with the metric

$$d(\theta, \vartheta)= \textstyle\begin{cases} 0&\mbox{if } \theta=\vartheta,\\ \frac{3}{2}&\mbox{if } (\theta, \vartheta)\in\{ (1,-1),(-1,1)\},\\ 1&\mbox{otherwise.} \end{cases} $$

Clearly, \((X,d)\) is complete. Take \(\varUpsilon0=\varUpsilon(-1)=0\) and \(\varUpsilon1=-1\).

First, letting \(\theta=0\) and \(\vartheta=1\), we have

$$F \bigl(d ( \varUpsilon\theta,\varUpsilon\vartheta ) \bigr)=F \bigl(d(0,-1) \bigr)=F(1) \quad\mbox{and}\quad F \bigl(d ( \theta,\vartheta ) \bigr)=F \bigl(d(0,1) \bigr)=F(1). $$

Thus, we cannot find \(\tau>0\) such that \(\tau+F(d ( \varUpsilon \theta,\varUpsilon\vartheta ))\leq F(d ( \theta,\vartheta ))\), that is, Theorem 1.9 is not applicable.

On the other hand, let \(\theta, \vartheta\in X\setminus\operatorname{Fix}(\varUpsilon)\) with \(d ( \varUpsilon\theta,\varUpsilon\vartheta )>0\). Hence \((\theta, \vartheta)\in\{(1,-1), (-1,1)\}\). Without loss of generality, take \((\theta, \vartheta)=(1,-1)\). Choose \(\alpha=\frac{1}{3}\), \(\beta=\frac{1}{2}\), \(\tau=\frac{1}{2}\ln (\frac{3}{2})\) and \(F(t)=\ln(t)\) for \(t>0\). We have

$$\begin{aligned} \tau+F \bigl(d ( \varUpsilon\theta,\varUpsilon\vartheta ) \bigr) =& \frac {1}{3}\ln \biggl(\frac{3}{2} \biggr)+\ln(1) \\ =& \frac{1}{3}\ln \biggl(\frac{3}{2} \biggr) \\ \leq& \frac{1}{2}\ln \biggl(\frac{3}{2} \biggr) \\ =&\alpha F \bigl(d (\theta,\vartheta ) \bigr)+ \beta F \bigl( d (\theta, \varUpsilon \theta ) \bigr)+ (1-\alpha-\beta) F \bigl(d (\vartheta,\varUpsilon \vartheta ) \bigr), \end{aligned}$$

that is, (2.1) holds for all \(\theta, \vartheta\in X\setminus \operatorname{Fix}(\varUpsilon)\) with \(d ( \varUpsilon\theta,\varUpsilon\vartheta )>0\). Here, ϒ admits a fixed point (\(u=0\)).

Example 2.4

Let \(X=[0,1]\). We endow X with the metric d defined by

$$d(\theta,\vartheta)= \textstyle\begin{cases} \max\{\theta,\vartheta\}&\mbox{if } \theta\neq\vartheta ,\\ 0 &\mbox{otherwise}. \end{cases} $$

Consider the mapping \(\varUpsilon: X\rightarrow X\) given as

$$\varUpsilon\theta= \textstyle\begin{cases} 0&\mbox{if } \theta\in[0,\frac{1}{4}),\\ \frac{1}{8} & \mbox{if } \theta\in[\frac{1}{4},\frac {1}{2}],\\ \frac{1}{4}&\mbox{if } \theta\in(\frac{1}{2},1]. \end{cases} $$

Take \(F(t)=\ln(t)\) and \(\alpha=\beta=\frac{1}{4}\). Choose \(\tau\in (0,\ln(2))\). Let \(\theta, \vartheta\in X\setminus\operatorname{Fix}(\varUpsilon )\) such that \(d ( \varUpsilon\theta,\varUpsilon\vartheta )>0\). Without loss of generality, we have the following cases: \((\theta, \vartheta)\in\{((0,\frac{1}{4})\times[\frac{1}{4},\frac {1}{2}]), ((0,\frac{1}{4})\times(\frac{1}{2},1]), ([\frac {1}{4},\frac{1}{2}]\times(\frac{1}{2},1])\}\). Case 1: \((\theta, \vartheta)\in((0,\frac{1}{4})\times[\frac {1}{4},\frac{1}{2}])\). Here, we have

$$\begin{aligned} \tau+F \bigl(d ( \varUpsilon\theta,\varUpsilon\vartheta ) \bigr)&=\tau+ \ln \biggl( \frac{1}{8} \biggr) \\ &\leq\ln(2)+\ln \biggl(\frac{1}{8} \biggr)= \ln \biggl(\frac{1}{4} \biggr)\\&\leq\frac {1}{2}\ln \biggl(\frac{1}{4} \biggr) \\ &\leq\frac{1}{2}\ln(\vartheta) \\ &\leq\alpha F \bigl(d (\theta,\vartheta ) \bigr)+ \beta F \bigl( d (\theta, \varUpsilon \theta ) \bigr)+ (1-\alpha-\beta) F \bigl(d (\vartheta,\varUpsilon \vartheta ) \bigr). \end{aligned}$$

Case 2: \((\theta, \vartheta)\in((0,\frac{1}{4})\times(\frac {1}{2},1])\). Here, we have

$$\begin{aligned} \tau+F \bigl(d ( \varUpsilon\theta,\varUpsilon\vartheta ) \bigr)&=\tau+ F \biggl( \frac{1}{4} \biggr) \\ &\leq\ln(2)+\ln \biggl(\frac{1}{4} \biggr)=\ln \biggl(\frac{1}{2} \biggr)\\&\leq\frac{1}{2}\ln \biggl(\frac{1}{2} \biggr) \\ &\leq\frac{1}{2}\ln(\vartheta) \\ &\leq\alpha F \bigl(d (\theta,\vartheta ) \bigr)+ \beta F \bigl( d (\theta, \varUpsilon \theta ) \bigr)+ (1-\alpha-\beta) F \bigl(d (\vartheta,\varUpsilon \vartheta ) \bigr). \end{aligned}$$

Case 3: \((\theta, \vartheta)\in([\frac{1}{4},\frac{1}{2}]\times (\frac{1}{2},1])\). Again, we have

$$\begin{aligned} \tau+F \bigl(d ( \varUpsilon\theta,\varUpsilon\vartheta ) \bigr)&=\tau+ F \biggl( \frac{1}{4} \biggr) \\ &\leq\alpha F \bigl(d (\theta,\vartheta ) \bigr)+ \beta F \bigl( d (\theta, \varUpsilon \theta ) \bigr)+ (1-\alpha-\beta) F \bigl(d (\vartheta,\varUpsilon \vartheta ) \bigr). \end{aligned}$$

All assumptions of Theorem 2.2 hold. Here, T has a fixed point, which is, \(u=0\).

On the other, the Wardowski contraction is not satisfied. Indeed, for \(\theta=\frac{1}{5}\) and \(\vartheta=\frac{1}{4}\), we have, for the standard metric \(d(\theta,\vartheta)=|\theta-\vartheta|\), the following inequality:

$$d ( \varUpsilon\theta,\varUpsilon\vartheta )=\frac {1}{8}> \frac{5}{100}= d (\theta,\vartheta ), $$

so one writes

$$\tau+F \bigl(d ( \varUpsilon\theta,\varUpsilon\vartheta ) \bigr)> F \bigl(d ( \theta, \vartheta ) \bigr), $$

for all \(\tau>0\) and \(F\in\mathcal{F}\).

Remark 2.5

If we consider \(F(t)=\ln(t)\) (for \(t>0\)) in Theorem 1.6, the contraction (2.1) becomes

$$ d ( \varUpsilon\theta,\varUpsilon\vartheta ) \leq e^{-\tau} \bigl[ d (\theta,\vartheta ) \bigr]^{\alpha} \cdot \bigl[ d (\theta,\varUpsilon \theta ) \bigr]^{\beta}\cdot \bigl[d (\vartheta, \varUpsilon\vartheta ) \bigr]^{1-\alpha-\beta}, $$
(2.7)

for all \(\theta, \vartheta\in X\setminus\operatorname{Fix}(\varUpsilon)\). That is, (2.7) corresponds to the main contraction (1.2). Hence, ϒ possesses a fixed point, i.e., Theorem 1.6 is a particular case of Theorem 2.2.

In what follows, we consider the multi-valued version of Theorem 2.2. Denote by \(CB(X)\) the set of all nonempty closed bounded subsets of X. Define the Pompeiu–Hausdorff metric H induced by d on \(CB(X)\) as follows:

$$H(\mathcal{A},\mathcal{B})=\max \Bigl\{ \sup_{\theta\in\mathcal {A}}d(\theta, \mathcal{B}),\sup_{\vartheta\in\mathcal {B}}d(\vartheta,\mathcal{A}) \Bigr\} , $$

for all \(\mathcal{A},\mathcal{B}\in CB(X)\) where \(d(\theta,\mathcal {B})=\inf_{\vartheta\in\mathcal{B}}d(\theta,\vartheta)\). An element \(\varsigma\in X\) is called a fixed point of the multi-valued mapping \(\varUpsilon:X\to CB(X)\) whenever \(\varsigma\in \varUpsilon\varsigma\).

Definition 2.6

Let \(( X,d ) \) be a metric space. We say that the multi-valued mapping \(\varUpsilon:X\rightarrow CB(X)\) is an extended interpolative multi-valued Ćirić–Reich–Rus typeF-contraction if there are \(\alpha,\beta>0\) with \(\alpha+\beta<1\), \(\tau>0\) and \(F\in \mathcal{F}\) so that

$$ \tau+F\bigl(H ( \varUpsilon\theta,\varUpsilon\vartheta )\bigr) \leq \alpha F\bigl(d (\theta,\vartheta )\bigr)+ \beta F\bigl( d (\theta , \varUpsilon\theta )\bigr)+ (1-\alpha-\beta) F\bigl(d (\vartheta,\varUpsilon \vartheta )\bigr), $$
(2.8)

for all \(\theta, \vartheta\in X\setminus\operatorname{Fix}(\varUpsilon)\) with \(H(\varUpsilon\theta,\varUpsilon\vartheta)>0\).

Theorem 2.7

Let \(( X,d ) \)be a complete metric space andϒbe an extended interpolative multi-valued Ćirić–Reich–Rus typeF-contraction. Assume in addition that

$$(H){:}\quad F(\inf\mathcal{A})=\inf \bigl(F(\mathcal{A}) \bigr). $$

Thenϒpossesses a fixed point.

Proof

Choose two arbitrary points \(\theta_{0}\in X\) and \(\theta_{1}\in\varUpsilon \theta_{0}\). If \(\theta_{0}\in\varUpsilon\theta_{0}\) or \(\theta_{1}\in \varUpsilon\theta_{1}\), we have nothing to prove. Let \(\theta_{0}\notin \varUpsilon\theta_{0}\) and \(\theta_{1}\notin\varUpsilon\theta_{1}\). Then \(\varUpsilon\theta_{0}\neq\varUpsilon\theta_{1}\). Now,

$$ \begin{aligned}[b] \frac{\tau}{2}+F\bigl(d( \theta_{1},\varUpsilon\theta_{1})\bigr)&< \tau+F\bigl(H( \varUpsilon \theta_{0},\varUpsilon\theta_{1})\bigr) \\ &\leq\alpha F \bigl(d (\theta_{0},\theta_{1} )\bigr) + \beta F \bigl(d(\theta_{0},\varUpsilon\theta_{0} )\bigr) +(1-\alpha-\beta) F\bigl(d (\theta_{1},\varUpsilon \theta_{1} )\bigr) \\ &\leq\alpha F \bigl(d (\theta_{0},\theta_{1} )\bigr) + \beta F \bigl(d(\theta_{0},\theta_{1} )\bigr) +(1-\alpha- \beta) F\bigl(d (\theta_{1},\varUpsilon\theta_{1} )\bigr). \end{aligned} $$
(2.9)

In the case where \(d(\theta_{0},\theta_{1})< d(\theta_{1},\varUpsilon\theta _{1})\), we obtain from (2.9), \(\frac{\tau}{2}+F(d(\theta_{1},\varUpsilon\theta_{1}))< F(d(\theta _{1},\varUpsilon\theta_{1}))\), which is a contradiction. Now, let \(d(\theta _{1},\varUpsilon\theta_{1})\leq d(\theta_{0},\theta_{1})\). Substituting in (2.9), we have

$$\frac{\tau}{2}+F \bigl(d(\theta_{1},\varUpsilon \theta_{1}) \bigr)< F \bigl(d(\theta _{0}, \theta_{1}) \bigr). $$

From this inequality and using \((H)\), we can conclude that there is \(\theta_{2}\in\varUpsilon\theta_{1}\) so that

$$\frac{\tau}{2}+F \bigl(d(\theta_{1},\theta_{2}) \bigr)< F \bigl(d(\theta_{0},\theta_{1}) \bigr). $$

Continuing this process, we obtain a sequence \(\{\theta_{n}\}\) in X such that \(\theta_{n+1}\in\varUpsilon\theta_{n}\), \(\theta_{n}\notin \varUpsilon\theta_{n}\) and

$$\begin{aligned} \frac{\tau}{2}+F \bigl(d(\theta_{n}, \theta_{n+1}) \bigr)< F \bigl(d(\theta_{n-1}, \theta_{n}) \bigr), \end{aligned}$$
(2.10)

for all \(n\geq1\).

If there is \(n_{0}\) so that \(\theta_{n_{0}}=\theta_{n_{0}+1}\), then \(\theta _{n_{0}}\) is a fixed point of T. So, assume that \(\theta_{n}\neq\theta _{n+1}\) for all \(n\geq0\). Consequently

$$ F \bigl(d (\theta_{n},\theta_{n+1} ) \bigr) \leq F \bigl(d (\theta _{n-1},\theta_{n} ) \bigr)- \frac{\tau}{2}\leq\cdots\leq F \bigl(d (\theta_{0}, \theta_{1} ) \bigr)-n \biggl(\frac{\tau}{2} \biggr), $$
(2.11)

for all \(n\geq1\). Similar to Theorem 1.6, we find that \(\{\theta_{n}\}\) is a cauchy sequence. Suppose \(\theta_{n}\to\theta\). suppose to the contrary \(\theta\notin\varUpsilon\theta\).

We consider two cases.

Case 1: There is a subsequence \(\{\theta_{n_{k}}\}\) such that \(\varUpsilon\theta_{n_{k}}=\varUpsilon\theta\) for all \(k\in\mathbb {N}\). In this case,

$$d(\theta,\varUpsilon\theta)=\lim d(\theta_{n_{k}+1},\varUpsilon\theta)= \lim H( \varUpsilon\theta_{n_{k}},\varUpsilon\theta)=0. $$

Case 2: There is a natural number N such that \(\varUpsilon\theta_{n}\neq\varUpsilon\theta\) for all \(n\geq N\). In this case, applying (2.8), for \(\theta=\theta_{n}\) and \(\vartheta=\theta \), we have

$$ \begin{aligned}[b] \tau+F \bigl(d (\theta_{n+1}, \varUpsilon\theta ) \bigr)&= \tau +F \bigl(H ( \varUpsilon\theta_{n}, \varUpsilon \theta ) \bigr) \\ & \leq\alpha F \bigl( d (\theta_{n},\theta ) \bigr)+\beta F \bigl( d ( \theta_{n},\theta_{n+1} ) \bigr) +(1-\alpha-\beta) F \bigl(d ( \theta,\varUpsilon\theta ) \bigr). \end{aligned} $$
(2.12)

Letting \(n\to\infty\) in the inequality (2.12), we find that \(\lim_{n\to\infty} F(d(\theta_{n+1},\varUpsilon\theta ))=-\infty\) and so \(\lim_{n\to\infty} d(\theta _{n+1},\varUpsilon\theta)=0\). Therefore,

$$d(\theta,\varUpsilon\theta)= \lim_{n\to\infty} d(\theta _{n+1}, \varUpsilon\theta)\leq \lim_{n\to\infty} H( \varUpsilon\theta_{n}, \varUpsilon\theta)=0. $$

Thus, \(d(\theta,\varUpsilon\theta)=0\) and so \(\theta\in\varUpsilon \theta\). Thus, \(\theta\in\varUpsilon\theta\). □

Remark 2.8

Some corollaries could be derived for particular choices of F in Theorem 2.7.

3 An application to integral equations

Take \(I=[0,T]\). Let \(X=C(I,\mathbb{R})\) be the set of all real valued continuous functions with domain I. Consider

$$d(\theta,\vartheta)=\sup_{t\in I} \bigl( \bigl\vert \theta(t)- \vartheta (t) \bigr\vert \bigr)= \Vert \theta-\vartheta \Vert . $$

Consider the integral equation:

$$ \theta(t)=q(t)+ \int_{0}^{T} G(t,\omega)f \bigl(\omega,\theta(\omega ) \bigr)\,d\omega,\quad t\in[0,T], $$
(3.1)

where

  1. (C1)

    \(q:I\to\mathbb{R}\) and \(f:I\times\mathbb{R}\to\mathbb {R}\) are continuous;

  2. (C2)

    \(G:I\times I\to\mathbb{R}\) is continuous and measurable at \(\omega\in I\) for all \(t\in I\);

  3. (C3)

    \(G(t,\omega)\geq0\) for all \(t,\omega\in I\) and \(\int _{0}^{T} G(t,\omega)\,d\omega\leq1\) for all \(t\in I\).

Theorem 3.1

Assume that the conditions (C1)(C3) hold. Suppose that there are \(\tau>0\)and \(\alpha,\beta\in(0,1)\)with \(\alpha+\beta<1\)so that

$$ \begin{aligned}[b] & \bigl\vert f\bigl(t,\theta(t) \bigr)-f\bigl(t,\vartheta(t)\bigr) \bigr\vert \\ &\quad\leq\frac{ \vert \theta(t)-\vartheta(t) \vert }{ [ \tau\sqrt{ \Vert \theta-\vartheta \Vert }+\alpha+\beta\sqrt{\frac{ \Vert \theta-\vartheta \Vert }{ \Vert \theta-\int _{0}^{T} G(t,\omega)f(\omega,\theta(\omega))\,d\omega \Vert }}+(1-\alpha -\beta)\sqrt{\frac{ \Vert \theta-\vartheta \Vert }{ \Vert \vartheta-\int_{0}^{T} G(t,\omega)f(\omega,\vartheta(\omega))\,d\omega \Vert }} ]^{2}}, \end{aligned} $$
(3.2)

for each \(t\in I\)and for all \(\theta,\vartheta\in C(I,\mathbb{R})\)such that

$$\begin{gathered} \theta(t)\neq \int_{0}^{T} G(t,\omega) \bigl(f \bigl(\omega, \theta( \omega ) \bigr) \bigr)\,d\omega, \\ \vartheta(t)\neq \int_{0}^{T} G(t,\omega)f \bigl(\omega,\vartheta( \omega ) \bigr)\,d\omega,\end{gathered} $$

and

$$\int_{0}^{T} G(t,\omega)f \bigl(\omega,\theta( \omega) \bigr)\,d\omega\neq \int_{0}^{T} G(t,\omega)f \bigl(\omega,\vartheta( \omega) \bigr)\,d\omega. $$

Then the integral equation (3.1) has a solution in \(C(I,\mathbb{R})\).

Proof

Define \(\varUpsilon:C(I,\mathbb{R})\to C(I,\mathbb{R})\) as

$$\varUpsilon\theta(t)=q(t)+ \int_{0}^{T} G(t,\omega)f \bigl(\omega,\theta(\omega ) \bigr)\,d\omega,\quad t\in[0,T]. $$

We have, for every \(t\in[0,T]\),

$$\begin{aligned} &\bigl\vert \varUpsilon\theta(t)-\varUpsilon\vartheta(t) \bigr\vert \\&\quad =\biggl| \int_{0}^{T} G(t,\omega ) \bigl(f \bigl(\omega,\theta( \omega) \bigr)-f \bigl(\omega,\vartheta(\omega) \bigr)\bigr)\,d\omega\biggr| \\ &\quad\leq \int_{0}^{T} G(t,\omega) \bigl\vert f \bigl( \omega, \theta(\omega) \bigr)-f \bigl(\omega ,\vartheta(\omega) \bigr) \bigr\vert \,d\omega \\ &\quad\leq \int_{0}^{T} \frac{G(t,\omega) \vert \theta(t)-\vartheta(t) \vert }{ [ \tau\sqrt{ \Vert \theta-\vartheta \Vert }+\alpha+\beta\sqrt{\frac{ \Vert \theta-\vartheta \Vert }{ \Vert \theta -T\theta \Vert }}+(1-\alpha-\beta)\sqrt{\frac{ \Vert \theta-\vartheta \Vert }{ \Vert \vartheta-T\vartheta \Vert }} ]^{2}}\,d\omega \\ &\quad\leq\frac{ \Vert \theta-\vartheta \Vert }{ [ \tau\sqrt{ \Vert \theta -\vartheta \Vert }+\alpha+\beta\sqrt{\frac{ \Vert \theta-\vartheta \Vert }{ \Vert \theta-T\theta \Vert }}+(1-\alpha-\beta)\sqrt{\frac{ \Vert \theta -\vartheta \Vert }{ \Vert \vartheta-T\vartheta \Vert }} ]^{2}} \int_{0}^{T}G(t,\omega)\,d\omega \\ &\quad\leq\frac{ \Vert \theta-\vartheta \Vert }{ [ \tau\sqrt{ \Vert \theta -\vartheta \Vert }+\alpha+\beta\sqrt{\frac{ \Vert \theta-\vartheta \Vert }{ \Vert \theta-\varUpsilon\theta \Vert }}+(1-\alpha-\beta) \sqrt{\frac{ \Vert \theta-\vartheta \Vert }{ \Vert \vartheta-\varUpsilon\vartheta \Vert }} ]^{2}}. \end{aligned}$$

Take the supremum to find that

$$\begin{aligned} d(\varUpsilon\theta, \varUpsilon\vartheta) &= \Vert \varUpsilon\theta- \varUpsilon \vartheta \Vert \\ &\leq\frac{ \Vert \theta-\vartheta \Vert }{ [ \tau\sqrt{ \Vert \theta -\vartheta \Vert }+\alpha+\beta\sqrt{\frac{ \Vert \theta-\vartheta \Vert }{ \Vert \theta-\varUpsilon\theta \Vert }}+(1-\alpha-\beta) \sqrt{\frac{ \Vert \theta-\vartheta \Vert }{ \Vert \vartheta-\varUpsilon\vartheta \Vert }} ]^{2}} \\ &=\frac{d(\theta,\vartheta)}{ [ \tau\sqrt{d(\theta ,\vartheta)}+\alpha+\beta\sqrt{\frac{d(\theta,\vartheta )}{d(\theta,\varUpsilon\theta)}}+(1-\alpha-\beta) \sqrt{\frac{d(\theta,\vartheta)}{d(\vartheta,\varUpsilon\vartheta )}} ]^{2}}. \end{aligned}$$

From the above inequality, we obtain

$$\begin{aligned} \frac{1}{\sqrt{d(\varUpsilon\theta, \varUpsilon\vartheta)}} &\geq\tau +\alpha \biggl(\frac{1}{\sqrt{d(\theta,\vartheta)}} \biggr)+\beta \biggl(\frac {1}{\sqrt{d(\theta,\varUpsilon\theta)}} \biggr) \\ &\quad+(1-\alpha-\beta) \biggl(\frac{1}{\sqrt{d(\vartheta,\varUpsilon\vartheta)}} \biggr). \end{aligned}$$

This is equivalent to

$$\begin{aligned} \tau+ \biggl(\frac{-1}{\sqrt{d(\varUpsilon\theta, \varUpsilon\vartheta)}} \biggr) &\leq\alpha \biggl(\frac{-1}{\sqrt{d(\theta,\vartheta)}} \biggr)+\beta \biggl(\frac {-1}{\sqrt{d(\theta,\varUpsilon\theta)}} \biggr) \\ &\quad+(1-\alpha-\beta) \biggl(\frac{-1}{\sqrt{d(\vartheta,\varUpsilon\vartheta)}} \biggr). \end{aligned}$$

Therefore,

$$\begin{aligned} \tau+ \biggl(\frac{-1}{\sqrt{d(\varUpsilon\theta, \varUpsilon\vartheta)}}+1 \biggr) &\leq\alpha \biggl( \frac{-1}{\sqrt{d(\theta,\vartheta)}}+1 \biggr)+\beta \biggl(\frac {-1}{\sqrt{d(\theta,\varUpsilon\theta)}}+1 \biggr) \\ &\quad+(1-\alpha-\beta) \biggl(\frac{-1}{\sqrt{d(\vartheta,\varUpsilon\vartheta)}}+1 \biggr). \end{aligned}$$

Taking \(F(t)=-\frac{1}{\sqrt{t}}+1\), we get

$$\tau+F \bigl(d ( \varUpsilon\theta,\varUpsilon\vartheta ) \bigr) \leq \alpha F \bigl(d ( \theta,\vartheta ) \bigr)+\beta F \bigl( d (\theta ,\varUpsilon\theta ) \bigr)+(1- \alpha-\beta) F \bigl(d (\vartheta ,\varUpsilon\vartheta ) \bigr), $$

for all \(\theta, \vartheta\in X\setminus\operatorname{Fix}(\varUpsilon)\) with \(d ( \varUpsilon\theta,\varUpsilon\vartheta )>0\), which is (2.8). Therefore, by Theorem 2.2, ϒ has a fixed point. Hence there is a solution for (3.1). □

4 Conclusion

We aimed to enrich the fixed point theory by addressing interpolative approaches.