1 Introduction and definitions

Let \(\mathcal{A}\) be the class of functions f of the form

$$ f(z) = z + \sum_{n=2}^{\infty } a_{n} z^{n} $$
(1.1)

which are analytic in the open unit disc \(\Delta =\{z\in \mathbb{C}: \vert z \vert <1\}\) and normalized by the conditions \(f(0)=0\) and \(f^{\prime }(0)=1\). The Koebe one-quarter theorem [4] ensures that the image of Δ under every univalent function \(f\in \mathcal{A}\) contains the disc with the center in the origin and the radius \(1/4\). Thus, every univalent function \(f\in \mathcal{A}\) has an inverse \(f^{-1}:f(\Delta )\rightarrow \Delta \), satisfying \(f^{-1}(f(z))=z\), \(z\in \Delta \), and

$$ f \bigl(f^{-1}(w) \bigr)=w,\qquad \vert w \vert < r_{0}(f),\qquad r_{0}(f)\geq \frac{1}{4}. $$

In addition, it is straightforward to witness that the inverse function has the series expansion

$$ f^{-1}(w)=w-a_{2}w^{2}+ \bigl(2a_{2}^{2}-a_{3} \bigr)w^{3}- \bigl(5a _{2}^{3}-5a_{2}a_{3}+a_{4} \bigr)w^{4}+\cdots ,\quad w\in f(\Delta ). $$
(1.2)

A function \(f\in \mathcal{A}\) is said to be bi-univalent, if both f and \(f^{-1}\) are univalent in Δ, in the sense that \(f^{-1}\) has a univalent analytic continuation to Δ and we denote by Σ this class of bi-univalent functions. Actually, the study of the Taylor–Maclaurin coefficient inequalities for various classes of bi-univalent functions was recently revived by Srivastava et al. [16]. The huge flood of papers (for example) [1, 3, 5, 6, 9, 10, 12,13,14,15, 17,18,19] which emerged essentially from the pioneering work of Srivastava et al. [16]. One could refer [16], the above-mentioned work and the references therein for history, examples and different classes and its subclasses of bi-univalent functions. Recently, Çağlar et al. [2] found the upper bounds for the second Hankel determinant for certain subclasses of analytic and bi-univalent functions and Srivastava et al. [11] used the Faber polynomial expansions to address a new subclass of Σ and obtained bounds for their nth (\(n \geq 3\)) coefficients subject to a given gap series condition.

Definition 1.1

([7])

Let \(\mathcal{P}_{k}(\alpha )\), with \(k\geq 2\) and \(0\leq \alpha <1\), denote the class of univalent analytic functions P, normalized with \(P(0)=1\), and satisfying

$$ \int _{0}^{2\pi } \biggl\vert \frac{\operatorname{Re}P(z)-\alpha }{1-\alpha } \biggr\vert \,\operatorname{d}\theta \leq k\pi , $$

where \(z=re^{i\theta }\in \Delta \).

For \(\alpha =0\), we denote \(\mathcal{P}_{k}:=\mathcal{P}_{k}(0)\), hence the class \(\mathcal{P}_{k}\) corresponds to the class of functions p analytic in Δ, normalized with \(p(0)=1\), and having the expression

$$ p(z)= \int _{0}^{2\pi }\frac{1-ze^{it}}{1+ze^{it}}\,\operatorname{d}\mu (t), $$
(1.3)

where λ is a real-valued function with bounded variation, which ensures

$$ \int _{0}^{2\pi }d\mu (t)=2\pi \quad \text{and}\quad \int _{0}^{2\pi } \bigl\vert d\mu (t) \bigr\vert \leq k,\quad k\geq 2. $$
(1.4)

Obviously, \(\mathcal{P}:=\mathcal{P}_{2}\) is the celebrated class of Carathéodory functions, that is, the normalized functions with positive real part in the open unit disc Δ.

Definition 1.2

A function \(f\in \varSigma \) of the form

$$ f(z) = z + \sum_{n=2}^{\infty } a_{n} z^{n} $$

belongs to the class \(\mathcal{B}_{\varSigma }^{\lambda , \eta , \delta }(k; \alpha )\), \(\lambda \geq 0\), \(\delta \geq 1\), \(\eta \geq 0\), \(k\geq 2\) and \(0\leq \alpha <1\), if the subsequent conditions are fulfilled:

$$ ( 1-\delta ) \biggl(\frac{f(z)}{z} \biggr)^{\lambda }+ \delta f^{\prime }(z) \biggl(\frac{f(z)}{z} \biggr)^{\lambda -1}+ \nu \eta z f^{\prime \prime }(z) \in \mathcal{P}_{k}(\alpha ),\quad z \in \Delta , $$
(1.5)

and

$$ ( 1-\delta ) \biggl(\frac{g(w)}{w} \biggr)^{\lambda }+ \delta g^{\prime }(w) \biggl(\frac{g(w)}{w} \biggr)^{\lambda -1}+ \nu \eta w g^{\prime \prime }(w) \in \mathcal{P}_{k}(\alpha ),\quad w \in \Delta , $$
(1.6)

where the function \(g(w)=f^{-1}(w)\) is defined by (1.2) and \(\nu =\frac{2\delta +\lambda }{2\delta +1}\).

It is remarkable that the particular values of λ, δ, η, α and m direct the class \(\mathcal{B}_{\varSigma } ^{\lambda , \eta , \delta }(k; \alpha )\) to different subclasses, we exhibit the following subclasses:

(1) For \(\eta =0\), we obtain the class \(\mathcal{B}_{\varSigma }^{1, 0, \delta }(k; \alpha )\equiv \mathcal{N}_{\varSigma }^{\lambda , \delta }(k; \alpha )\). A function \(f\in \varSigma \) of the form

$$ f(z) = z + \sum_{n=2}^{\infty } a_{n} z^{n} $$

is said to be in \(\mathcal{N}_{\varSigma }^{\lambda , \delta }(k; \alpha )\), if

$$ ( 1-\delta ) \biggl(\frac{f(z)}{z} \biggr)^{\lambda }+ \delta f^{\prime }(z) \biggl(\frac{f(z)}{z} \biggr)^{\lambda -1}\in \mathcal{P}_{k}(\alpha ),\quad z\in \Delta , $$

and for \(g(w)=f^{-1}(w)\)

$$ ( 1-\delta ) \biggl(\frac{g(w)}{w} \biggr)^{\lambda }+ \delta g^{\prime }(w) \biggl(\frac{g(w)}{w} \biggr)^{\lambda -1}\in \mathcal{P}_{k}(\alpha ),\quad w\in \Delta , $$

holds.

Remark 1.3

For \(k=2\), the class \(\mathcal{N}_{\varSigma }^{\lambda , \delta }(2; \alpha )\equiv \mathcal{N}_{\varSigma }^{\lambda , \delta }(\alpha )\) was considered by Çağlar et al. [3].

(2) For \(\delta =1\) and \(\eta =0\), we observe the class \(\mathcal{B}_{ \varSigma }^{\lambda , 0, 1 }(k; \alpha )\equiv \mathcal{R}_{ \varSigma }^{\lambda }(k; \alpha )\). A function \(f\in \varSigma \) of the form

$$ f(z) = z + \sum_{n=2}^{\infty } a_{n} z^{n} $$

is said to be in \(\mathcal{R}_{\varSigma }^{\lambda }(k; \alpha )\), if

$$ f^{\prime }(z) \biggl(\frac{f(z)}{z} \biggr)^{\lambda -1}\in \mathcal{P}_{k}(\alpha ),\quad z\in \Delta , $$

and for \(g(w)=f^{-1}(w)\)

$$ g^{\prime }(w) \biggl(\frac{g(w)}{w} \biggr)^{\lambda -1}\in \mathcal{P}_{k}(\alpha ),\quad w\in \Delta , $$

holds.

Remark 1.4

For \(k=2\), the class \(\mathcal{R}_{\varSigma }^{\lambda }(2; \alpha ) \equiv \mathcal{R}_{\varSigma }^{\lambda }(\alpha )\) was considered in [8].

(3) For \(\lambda =0\); \(\delta =1\) and \(\eta =0\), we have \(\mathcal{B}_{ \varSigma }^{1, 0, 1 }(k; \alpha )\equiv \mathcal{S}_{\varSigma } ^{*}(k; \alpha )\). A function \(f\in \varSigma \) of the form

$$ f(z) = z + \sum_{n=2}^{\infty } a_{n} z^{n} $$

is said to be in \(\mathcal{S}_{\varSigma }^{*}(k; \alpha )\), if

$$ \frac{zf^{\prime }(z)}{f(z)}\in \mathcal{P}_{k}(\alpha ),\quad z\in \Delta , $$

and for \(g(w)=f^{-1}(w)\)

$$ \frac{wg^{\prime }(w)}{g(w)}\in \mathcal{P}_{k}(\alpha ),\quad w\in \Delta , $$

holds.

Remark 1.5

For \(k=2\), we attain the class \(\mathcal{S}_{\varSigma }^{*}(2; \alpha )\equiv \mathcal{S}_{\varSigma }^{*}(\alpha )\).

(4) For \(\lambda =1\), we have the class \(\mathcal{B}_{\varSigma }^{1, \eta , \delta }(k; \alpha )\equiv \mathcal{B}_{\varSigma }^{\eta , \delta }(k; \alpha )\). A function \(f\in \varSigma \) of the form

$$ f(z) = z + \sum_{n=2}^{\infty } a_{n} z^{n} $$

is said to be in \(\mathcal{B}_{\varSigma }^{\eta , \delta }(k; \alpha )\), if

$$ (1-\delta )\frac{f(z)}{z} + \delta f^{\prime }(z)+\eta zf^{\prime \prime }(z)\in \mathcal{P}_{k}(\alpha ),\quad z\in \Delta , $$

and for \(g(w)=f^{-1}(w)\)

$$ (1-\delta )\frac{g(w)}{w} + \delta g^{\prime }(w)+\eta wg^{\prime \prime }(w)\in \mathcal{P}_{k}(\alpha ),\quad w\in \Delta , $$

holds.

(5) For \(\delta =\lambda =1\), we obtain the class \(\mathcal{B}_{\varSigma } ^{1, \eta , 1 }(k; \alpha )\equiv \mathcal{F}_{\varSigma }(\eta , k;\alpha )\). A function \(f\in \varSigma \) of the form

$$ f(z) = z + \sum_{n=2}^{\infty } a_{n} z^{n} $$

is said to be in \(\mathcal{F}_{\varSigma }(\eta , k;\alpha )\), if

$$ f^{\prime }(z)+\eta zf^{\prime \prime }(z)\in \mathcal{P}_{k}( \alpha ),\quad z\in \Delta , $$

and for \(g(w)=f^{-1}(w)\)

$$ g^{\prime }(w)+\eta wg^{\prime \prime }(w)\in \mathcal{P}_{k}( \alpha ),\quad w\in \Delta , $$

holds.

(6) For \(\lambda =1\) and \(\eta =0\), we obtain the class \(\mathcal{B}_{ \varSigma }^{1, 0, \delta }(k; \alpha ),\equiv \mathcal{B}_{ \varSigma }(\delta , k;\alpha )\). A function \(f\in \varSigma \) of the form

$$ f(z) = z + \sum_{n=2}^{\infty } a_{n} z^{n} $$

is said to be in \(\mathcal{B}_{\varSigma }(\delta , m;\alpha )\), if

$$ (1-\delta )\frac{f(z)}{z}+\delta f^{\prime }(z)\in \mathcal{P}_{k}( \alpha ),\quad z\in \Delta , $$

and for \(g(w)=f^{-1}(w)\)

$$ (1-\delta )\frac{g(w)}{w}+\delta g^{\prime }(w)\in \mathcal{P}_{k}( \alpha ),\quad w\in \Delta , $$

holds.

Remark 1.6

For \(k=2\), the class \(\mathcal{B}_{\varSigma }(\delta , 2;\alpha )\equiv \mathcal{B}_{\varSigma }(\delta ;\alpha )\) was considered by Frasin and Aouf [5].

(7) For \(\delta =1\), \(\lambda =1\) and \(\eta = 0\), we have the class \(\mathcal{B}_{\varSigma }^{1, 0, 1 }(k; \alpha )\equiv \mathcal{P}_{\varSigma }(k;\alpha )\). A function \(f\in \varSigma \) of the form

$$ f(z) = z + \sum_{n=2}^{\infty } a_{n} z^{n} $$

is said to be in \(\mathcal{P}_{\varSigma }(m;\alpha )\), if

$$ f^{\prime }(z) \in \mathcal{P}_{k}(\alpha ),\quad z\in \Delta , $$

and for \(g(w)=f^{-1}(w)\)

$$ g^{\prime }(w) \in \mathcal{P}_{k}(\alpha ),\quad w\in \Delta , $$

holds.

Remark 1.7

For \(k=2\), the class \(\mathcal{P}_{\varSigma }(2;\alpha )\equiv \mathcal{P}_{\varSigma }(\alpha )\) was introduced and studied by Srivastava et al. [16].

To prove the results discussed in this article, we need the following lemma.

Lemma 1.8

Let the function \(\varPhi (z)=1+\sum_{n=1}^{\infty }{h_{n}}{z^{n}} \), \(z\in \Delta \), such that \(\varPhi \in \mathcal{P}_{m}(\alpha )\). Then

$$ \vert h_{n} \vert \leq k(1-\alpha ),\quad n\geq 1. $$

In this study, we stumble on the estimates for the coefficients \(|a_{2}|\) and \(|a_{3}|\) for functions in the subclass \(\mathcal{B} _{\varSigma }^{\lambda , \eta , \delta }(k; \alpha )\). Also, we attain the upper bounds of the Fekete–Szegö inequality by means of the results of \(|a_{2}|\) and \(|a_{3}|\).

2 Main results

In the subsequent theorem, we find the coefficient estimates for functions in \(\mathcal{B}_{\varSigma }^{\lambda , \eta , \delta }(k; \alpha )\).

Theorem 2.1

Let \(f(z)=z+\sum_{n=2}^{\infty }a_{n}z^{n}\) be in the class \(\mathcal{B}_{\varSigma }^{\lambda , \eta , \delta }(k; \alpha )\). Then

$$\begin{aligned}& \vert a_{2} \vert \leq \min \biggl\{ \sqrt{\frac{2k(1-\alpha )}{(2 \delta + \lambda )(\lambda +1)+12\nu \eta }}; \frac{k(1-\alpha )}{ \delta +\lambda +2\nu \eta } \biggr\} , \\& \vert a_{3} \vert \leq \min \biggl\{ \frac{k(1-\alpha )}{2\delta +\lambda +6\nu \eta } + \frac{2k(1-\alpha )}{(2\delta +\lambda )( \lambda +1)+12\nu \eta }, \frac{k(1-\alpha )}{2\delta +\lambda +6 \nu \eta } + \frac{k^{2}(1-\alpha )^{2}}{ (\delta +\lambda +2 \nu \eta )^{2}} \biggr\} , \end{aligned}$$

and

$$\begin{aligned} \bigl\vert a_{3}-\mu a_{2}^{2} \bigr\vert &\leq \frac{k(1-\alpha )}{2\delta +\lambda +6\nu \eta }, \end{aligned}$$

where

$$ \mu = \frac{(2\delta +\lambda )(\lambda +3)+24\nu \eta }{2(2\delta + \lambda +6\nu \eta )}. $$

Proof

Since \(f\in \mathcal{B}_{\varSigma }^{\lambda , \eta , \delta }(k; \alpha )\), from Definition 1.2 we have

$$ ( 1-\delta ) \biggl(\frac{f(z)}{z} \biggr)^{\lambda }+ \delta f^{\prime }(z) \biggl(\frac{f(z)}{z} \biggr)^{\lambda -1}+ \nu \eta z f^{\prime \prime }(z) = p(z) $$
(2.1)

and

$$ ( 1-\delta ) \biggl(\frac{g(w)}{w} \biggr)^{\lambda }+ \delta g^{\prime }(w) \biggl(\frac{g(w)}{w} \biggr)^{\lambda -1}+ \nu \eta w g^{\prime \prime }(w)=q(w), $$
(2.2)

where \(p, q\in \mathcal{P}_{m}(\alpha )\) and \(g=f^{-1}\). Using the fact that the functions p and q have the following Taylor expansions:

$$\begin{aligned}& p(z)=1+p_{1}z+p_{2}z^{2}+p_{3}z^{3}+ \cdots ,\quad z\in \Delta , \end{aligned}$$
(2.3)
$$\begin{aligned}& q(w)=1+q_{1}w+q_{2}w^{2}+q_{3}w^{3}+ \cdots ,\quad w\in \Delta , \end{aligned}$$
(2.4)

and equating the coefficients in (2.1) and (2.2), from (1.2) we obtain

$$\begin{aligned}& (\delta +\lambda + 2\nu \eta )a_{2} = p_{1}, \end{aligned}$$
(2.5)
$$\begin{aligned}& (2\delta +\lambda ) \biggl[ \biggl(\frac{\lambda -1}{2} \biggr)a_{2} ^{2}+ \biggl(1+\frac{6\eta }{2\delta +1} \biggr)a_{3} \biggr] = p_{2}, \end{aligned}$$
(2.6)
$$\begin{aligned}& - (\delta +\lambda +2\nu \eta )a_{2} = q_{1}, \end{aligned}$$
(2.7)
$$\begin{aligned}& (2\delta +\lambda ) \biggl[ \biggl(\frac{\lambda +3}{2}+\frac{12\eta }{2 \delta +1} \biggr)a_{2}^{2}- \biggl(1+\frac{6\eta }{2\delta +1} \biggr)a _{3} \biggr] = q_{2}. \end{aligned}$$
(2.8)

In view of the fact that \(p, q\in \mathcal{P}_{m}(\alpha )\) and Lemma 1.8, the following inequalities hold:

$$\begin{aligned} \vert p_{k} \vert \leq k(1-\alpha ), \qquad \vert q_{k} \vert \leq k(1-\alpha ), \quad k\geq 1. \end{aligned}$$
(2.9)

It follows from (2.6) and (2.8), additionally, by means of the inequalities (2.9), that

$$ \vert a_{2} \vert \leq \sqrt{ \frac{2k(1-\alpha )}{(2\delta + \lambda )(\lambda +1)+12\nu \eta }}. $$
(2.10)

From (2.5) and (2.7), we have

$$ p_{1}=-q_{1} $$

and

$$\begin{aligned}& a_{2}^{2} = \frac{p_{1}^{2}}{ (\delta +\lambda +2\nu \eta ) ^{2}}, \end{aligned}$$
(2.11)

which, by applying (2.9), shows

$$\begin{aligned}& \vert a_{2} \vert \leq \frac{k(1-\alpha )}{\delta +\lambda +2\nu \eta }. \end{aligned}$$

Next, combining the above inequality with (2.10), the first inequality of the conclusion is proved.

On the other hand, by subtracting (2.8) from (2.6), we have

$$\begin{aligned} a_{3} = \frac{p_{2}-q_{2}}{2 (2\delta +\lambda +6\nu \eta )} + a _{2}^{2}. \end{aligned}$$
(2.12)

By using (2.10) in (2.12), we show

$$\begin{aligned}& \vert a_{3} \vert \leq \frac{k(1-\alpha )}{2\delta +\lambda +6\nu \eta } + \frac{2k(1- \alpha )}{(2\delta +\lambda )(\lambda +1)+12\nu \eta } \end{aligned}$$

and using (2.11) in (2.12), we get

$$\begin{aligned}& \vert a_{3} \vert \leq \frac{k(1-\alpha )}{2\delta +\lambda +6\nu \eta } + \frac{k ^{2}(1-\alpha )^{2}}{ (\delta +\lambda +2\nu \eta )^{2}}. \end{aligned}$$

From (2.8), we have

$$\begin{aligned} \frac{(2\delta +\lambda )(\lambda +3)+24\nu \eta }{2(2\delta +\lambda +6\nu \eta )} a_{2}^{2} - a_{3} = \frac{q_{2}}{2\delta +\lambda +6 \nu \eta }. \end{aligned}$$

Furthermore, using (2.9), we finally deduce

$$\begin{aligned}& \bigl\vert a_{3}-\mu a_{2}^{2} \bigr\vert \leq \frac{ \vert q_{2} \vert }{2 \delta +\lambda +6\nu \eta } \leq \frac{k(1-\alpha )}{2\delta + \lambda +6\nu \eta }, \end{aligned}$$

where

$$ \mu = \frac{(2\delta +\lambda )(\lambda +3)+24\nu \eta }{2(2\delta + \lambda +6\nu \eta )}, $$

which completes our proof. □

Remark 2.2

For \(k=2\), the results obtained in Theorem 2.1 improves the results of Yousef et al. [20, Theorem 4.1].

Corollary 2.3

Let \(f(z)=z+\sum_{n=2}^{\infty }a_{n}z^{n}\) be in the class \(\mathcal{B}_{\varSigma }^{\lambda , \eta , \delta }(\alpha )\). Then

$$\begin{aligned}& \vert a_{2} \vert \leq \min \biggl\{ \sqrt{\frac{4(1-\alpha )}{(2 \delta + \lambda )(\lambda +1)+12\nu \eta }}; \frac{2(1-\alpha )}{ \delta +\lambda +2\nu \eta } \biggr\} , \\& \vert a_{3} \vert \leq \min \biggl\{ \frac{2(1-\alpha )}{2\delta +\lambda +6\nu \eta } + \frac{4(1-\alpha )}{(2\delta +\lambda )( \lambda +1)+12\nu \eta }, \frac{2(1-\alpha )}{2\delta +\lambda +6 \nu \eta } + \frac{4(1-\alpha )^{2}}{ (\delta +\lambda +2\nu \eta )^{2}} \biggr\} , \end{aligned}$$

and

$$\begin{aligned} \biggl\vert a_{3}-\frac{(2\delta +\lambda )(\lambda +3)+24\nu \eta }{2(2 \delta +\lambda +6\nu \eta )} a_{2}^{2} \biggr\vert &\leq \frac{2(1- \alpha )}{2\delta +\lambda +6\nu \eta }. \end{aligned}$$

Corollary 2.4

Let \(f(z)=z+\sum_{n=2}^{\infty }a_{n}z^{n}\) be in the class \(\mathcal{N}_{\varSigma }^{\lambda , \delta }(k; \alpha )\). Then

$$\begin{aligned}& \vert a_{2} \vert \leq \min \biggl\{ \sqrt{\frac{2k(1-\alpha )}{(2 \delta + \lambda )(\lambda +1)}}; \frac{k(1-\alpha )}{\delta + \lambda } \biggr\} , \\& \vert a_{3} \vert \leq \min \biggl\{ \frac{k(1-\alpha )}{2\delta +\lambda } + \frac{2k(1-\alpha )}{(2\delta +\lambda )(\lambda +1)}, \frac{k(1-\alpha )}{2\delta +\lambda } + \frac{k^{2}(1-\alpha )^{2}}{ (\delta +\lambda )^{2}} \biggr\} , \end{aligned}$$

and

$$\begin{aligned} \biggl\vert a_{3}-\frac{\lambda +3}{2} a_{2}^{2} \biggr\vert &\leq \frac{k(1- \alpha )}{2\delta +\lambda }. \end{aligned}$$

3 Concluding remarks and observations

In this paper, we investigate the estimates of second and third Taylor–Maclaurin coefficients for a comprehensive class \(\mathcal{B} _{\varSigma }^{\lambda , \eta , \delta }(k; \alpha )\) of bi-univalent functions. Also, the corresponding coefficient estimates for functions in the subclasses \(\mathcal{R}_{\varSigma }^{\lambda }(k; \alpha )\), \(\mathcal{S}_{\varSigma }^{*}(k; \alpha )\), \(\mathcal{B} _{\varSigma }^{\eta , \delta }(k; \alpha )\), \(\mathcal{F}_{\varSigma }(\eta , k;\alpha )\), \(\mathcal{B}_{\varSigma }(\delta , k;\alpha )\) and \(\mathcal{P}_{\varSigma }(k;\alpha )\) as mentioned above can be derived easily and so we omit the details. Also, some interesting remarks on the results presented here are given.