1 Introduction

If \(p > 1,\frac{1}{p} + \frac{1}{q} = 1,a_{m},b_{n} \ge 0,0 < \sum_{m = 1}^{\infty } a_{m}^{p} < \infty\), and \(0 < \sum_{n = 1}^{\infty } b_{n} ^{q} < \infty \), then we have the following Hardy–Hilbert’s inequality with the best possible constant factor \(\pi /\sin (\frac{\pi }{p})\) (cf. [1], Theorem 315):

$$ \sum_{m = 1}^{\infty } \sum _{n = 1}^{\infty } \frac{a_{m}b_{n}}{m + n} < \frac{\pi }{\sin (\pi /p)} \Biggl(\sum_{m = 1} ^{\infty } a_{m}^{p} \Biggr)^{1/p} \Biggl(\sum_{n = 1}^{\infty } b_{n}^{q} \Biggr)^{1/q}. $$
(1)

Mulholland’s inequality with the same best possible constant factor was provided as follows (cf. [1], Theorem 343, replacing \(\frac{a_{m}}{m},\frac{b _{n}}{n}\) by \(a_{m},b_{n}\)):

$$ \sum_{m = 2}^{\infty } \sum _{n = 2}^{\infty } \frac{a_{m}b_{n}}{ \ln mn} < \frac{\pi }{\sin (\pi /p)} \Biggl(\sum_{m = 2}^{\infty } \frac{1}{m ^{1 - p}}a_{m}^{p} \Biggr)^{1/p} \Biggl(\sum_{n = 2}^{\infty } \frac{1}{n^{1 - q}}b _{n}^{q} \Biggr)^{1/q}. $$
(2)

If \(f(x),g(y) \ge 0,0 < \int _{0}^{\infty } f^{p}(x)\,dx < \infty \), and \(0 < \int _{0}^{\infty } g^{q}(y)\,dy < \infty \), then we still have the following Hardy–Hilbert’s integral inequality (cf. [1], Theorem 316):

$$ \int _{0}^{\infty } \int _{0}^{\infty } \frac{f(x)g(y)}{x + y} \,dx\,dy < \frac{ \pi }{\sin (\pi /p)} \biggl( \int _{0}^{\infty } f^{p}(x)\,dx \biggr)^{1/p} \biggl( \int _{0} ^{\infty } g^{q}(y)\,dy \biggr)^{1/q}, $$
(3)

where the constant factor \(\pi /\sin (\frac{\pi }{p})\) is the best possible. Inequalities (1), (2), and (3) with their extensions are important in analysis and its applications (cf. [2,3,4,5,6,7,8,9,10,11,12]).

In 1934, a half-discrete Hilbert-type inequality was given as follows (cf. [1], Theorem 351): If \(K(t)\ (t > 0)\) is decreasing, \(p > 1, \frac{1}{p} + \frac{1}{q} = 1,0 < \phi (s) = \int _{0}^{\infty } K(t)t ^{s - 1} \,dt < \infty \), then we have

$$ \int _{0}^{\infty } x^{p - 2} \Biggl(\sum _{n = 1}^{\infty } K(nx)a_{n} \Biggr)^{p}\,dx < \phi ^{p} \biggl(\frac{1}{q} \biggr) \sum_{n = 1}^{\infty } a_{n}^{p}. $$
(4)

In the last ten years, some new extensions of (4) with their applications and the reverses were provided by [13,14,15,16,17].

In 2016, by the use of the technique of real analysis, Hong [18] considered some equivalent statements of the extensions of (1) with the best possible constant factor related to a few parameters. The other similar works about Hilbert-type integral inequalities were given by [19,20,21,22].

In this paper, following the way of [18], by the use of the weight coefficients, the idea of introducing parameters and Hermite–Hadamard’s inequality, a more accurate reverse Mulholland-type inequality with parameters and the equivalent forms are given in Theorem 1. The equivalent statements of the best possible constant factor related to a few parameters and some particular cases are considered in Theorem 2 and Remarks 12.

2 Some lemmas

In what follows, we assume that \(p < 0\ (0 < q < 1),\frac{1}{p} + \frac{1}{q} = 1,\xi,\eta \in [0,\frac{1}{2}], \mathrm{s} \in \mathrm{N} = \{ 1,2, \ldots \}, 0 < c_{1} \le \cdots \le c_{s}, 0 < \lambda _{i} < \lambda \le s,\lambda _{i} \le 1\ (i = 1,2)\), \(a_{m},b_{n} \ge 0\), such that

$$\begin{aligned} &0 < \sum_{m = 2}^{\infty } \frac{ \ln ^{p[1 - (\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})] - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} < \infty\quad \text{and}\\ & 0 < \sum _{n = 2}^{\infty } \frac{ \ln ^{q[1 - (\frac{\lambda _{2}}{p} + \frac{\lambda - \lambda _{1}}{q})] - 1}(n - \eta )}{(n - \eta )^{1 - p}} b_{n}^{q} < \infty. \end{aligned}$$

For \(\gamma = \lambda _{1},\lambda - \lambda _{2}\), we set

$$ k_{s}(\gamma ): = \int _{0}^{\infty } \frac{t^{\gamma - 1}}{\prod_{k = 1}^{s} (t^{\lambda /s} + c_{k})} \,dt. $$

By Example 1 of [23], it follows that

$$ k_{s}(\gamma ) = \frac{\pi s}{\lambda \sin (\frac{\pi s\gamma }{ \lambda } )}\sum_{k = 1}^{s} c_{k}^{\frac{s\gamma }{\lambda } - 1} \prod_{j = 1(j \ne k)}^{s} \frac{1}{c_{j} - c_{k}} \in \mathrm{R}_{ +} = (0,\infty ). $$
(5)

In particular, for \(s = 1\), we have

$$ k_{1}(\gamma ) = \int _{0}^{\infty } \frac{t^{\gamma - 1}}{t^{\lambda } + c_{1}} \,dt= \frac{\pi }{\lambda \sin (\frac{\pi \gamma }{\lambda } )}c_{1}^{\frac{\eta }{\lambda } - 1}; $$

for \(s = 2\), we have

$$ k_{2}(\gamma ) = \int _{0}^{\infty } \frac{t^{\gamma - 1}}{(t^{\lambda /2} + c_{1})(t^{\lambda /2} + c_{2})} \,dt= \frac{2\pi }{\lambda \sin (\frac{2 \pi \gamma }{\lambda } )} \bigl(c_{1}^{\frac{2\gamma }{\lambda } - 1} - c _{2}^{\frac{2\gamma }{\lambda } - 1} \bigr)\frac{1}{c_{2} - c_{1}}. $$

Lemma 1

Define the following weight coefficients:

$$\begin{aligned} &\omega _{s}(\lambda _{2},m): = \ln ^{\lambda - \lambda _{2}}(m - \xi ) \sum_{n = 2}^{\infty } \frac{\ln ^{\lambda _{2} - 1}(n - \eta )}{ \prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \frac{1}{n - \eta } \\ &\quad \bigl(m \in \mathrm{N}\backslash \{ 1\} \bigr), \end{aligned}$$
(6)
$$\begin{aligned} &\varpi _{s}(\lambda _{1},n): = \ln ^{\lambda - \lambda _{1}}(n - \eta ) \sum_{m = 2}^{\infty } \frac{\ln ^{\lambda _{1} - 1}(m - \xi )}{ \prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \frac{1}{m - \xi } \\ &\quad \bigl(n \in \mathrm{N}\backslash \{ 1\} \bigr). \end{aligned}$$
(7)

For \(\lambda _{2} \le 1\), we have

$$ \omega _{s}(\lambda _{2},m) < k_{s}(\lambda - \lambda _{2}) \quad \bigl(m \in \mathrm{N}\backslash \{ 1\} \bigr); $$
(8)

for \(\lambda _{1} \le 1\), we have

$$ k_{s}(\lambda _{1}) \bigl(1 - \theta _{s}( \lambda _{1},n) \bigr) < \varpi _{s}(\lambda _{1},n) < k_{s}(\lambda _{1})\quad \bigl(n \in \mathrm{N}\backslash \{ 1\} \bigr), $$
(9)

where \(\theta _{s}(\lambda _{1})\) is indicated by

$$ \theta _{s}(\lambda _{1},n): = \frac{1}{k_{s}(\lambda _{1})} \int _{0}^{\frac{ \ln (2 - \xi )}{\ln (n - \eta )}} \frac{u^{\lambda _{1} - 1}}{\prod_{k = 1}^{s} ( u^{\lambda /s} + c_{k})} \,du= O \biggl( \frac{1}{\ln ^{\lambda _{1}}(n - \eta )} \biggr) \in (0,1). $$
(10)

Proof

Since for \(0 < \lambda _{2} \le 1,0 < \lambda \le s,y > \frac{3}{2}\), we find that

$$\begin{aligned} &( - 1)^{i}\frac{d^{i}}{dy^{i}}\ln ^{\lambda _{2} - 1}(y - \eta ) \ge 0, \qquad ( - 1)^{i}\frac{d^{i}}{dx^{i}}\frac{1}{y - \eta } > 0\quad \text{and} \\ &( - 1)^{i}\frac{d^{i}}{dy^{i}}\frac{1}{\prod_{k = 1}^{s} [\ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}( y - \eta )]} > 0\quad (i = 1,2). \end{aligned}$$

It follows that

$$ ( - 1)^{i}\frac{d^{i}}{dy^{i}}\frac{\ln ^{\lambda _{2} - 1}(y - \eta )}{ \prod_{k = 1}^{s} [\ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}( y - \eta )]}\frac{1}{y - \eta } > 0 \quad (i = 0,1,2). $$

By Hermite–Hadamard’s inequality (cf. [24]), we find

$$\begin{aligned} \omega _{s}(\lambda _{2},m) &< \ln ^{\lambda - \lambda _{2}}(m - \xi ) \int _{\frac{3}{2}}^{\infty } \frac{\ln ^{\lambda _{2} - 1}(y - \eta )}{ \prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(y - \eta )]} \frac{1}{y - \eta } \,dy \\ & = \ln ^{\lambda - \lambda _{2}}(m - \xi ) \int _{\frac{3}{2}}^{\infty } \frac{ \ln ^{\lambda _{2} - \lambda - 1}(y - \eta )}{\prod_{k = 1}^{s} \{ [ \frac{ \ln (m - \xi )}{\ln (y - \eta )}]^{\lambda /s} + c_{k}\}} \frac{1}{y - \eta } \,dy. \end{aligned}$$

Setting \(u = \frac{\ln (m - \xi )}{\ln (y - \eta )}\), it follows that \(du = \frac{ - \ln (m - \xi )}{\ln ^{2}(y - \eta )}\frac{1}{y - \eta } \,dy\) and

$$ \omega _{s}(\lambda _{2},m) < \int _{0}^{\frac{\ln (m - \xi )}{\ln ( \frac{3}{2} - \eta )}} \frac{u^{(\lambda - \lambda _{2}) - 1}}{ \prod_{k = 1}^{s} ( u^{\lambda /s} + c_{k})} \,du < \int _{0}^{\infty } \frac{u ^{(\lambda - \lambda _{2}) - 1}}{\prod_{k = 1}^{s} ( u^{\lambda /s} + c _{k})} \,du = k_{s}(\lambda - \lambda _{2}), $$

namely (8) follows.

In the same way, for \(\lambda _{1} \le 1\), by Hermite–Hadamard’s inequality, we find

$$ \varpi _{s}(\lambda _{1},n) < \ln ^{\lambda - \lambda _{1}}(n - \eta ) \int _{\frac{3}{2}}^{\infty } \frac{\ln ^{\lambda _{1} - 1}(x - \xi )}{ \prod_{k = 1}^{s} [ \ln ^{\lambda /s}(x - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \frac{1}{x - \xi } \,dx. $$

Setting \(u = \frac{\ln (x - \xi )}{\ln (n - \eta )}\), it follows that

$$ \varpi _{s}(\lambda _{1},n) < \int _{\frac{\ln (\frac{3}{2} - \xi )}{\ln (n - \eta )}}^{\infty } \frac{u ^{\lambda _{1} - 1}}{\prod_{k = 1}^{s} ( u^{\lambda /s} + c_{k})} \,du \le \int _{0}^{\infty } \frac{u^{\lambda _{1} - 1}}{\prod_{k = 1}^{s} ( u^{\lambda /s} + c_{k})} \,du = k_{s}(\lambda _{i}). $$

By the decreasing property, we also find

$$\begin{aligned} &\varpi _{s}(\lambda _{1},n) > \ln ^{\lambda - \lambda _{1}}(n - \eta ) \int _{2}^{\infty } \frac{\ln ^{\lambda _{1} - 1}(x - \xi )}{\prod_{k = 1} ^{s} [ \ln ^{\lambda /s}(x - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \frac{1}{x - \xi } \,dx \\ &\phantom{\varpi _{s}(\lambda _{1},n) }= \int _{\frac{\ln (2 - \xi )}{\ln (n - \eta )}}^{\infty } \frac{u^{ \lambda _{1} - 1}}{\prod_{k = 1}^{s} ( u^{\lambda /s} + c_{k})} \,du = k _{s}(\lambda _{1}) \bigl[1 - \theta _{s}( \lambda _{1},n) \bigr] > 0, \\ &0 < \theta _{s}(\lambda _{1},n) \le \frac{1}{k_{s}(\lambda _{1})} \int _{0}^{\frac{\ln (2 - \xi )}{\ln (n - \eta )}} \frac{u^{\lambda _{1} - 1}}{c _{1}^{s}} \,du = \frac{1}{\lambda _{1}k_{s}(\lambda _{1})c_{1}^{s}} \biggl[\frac{ \ln (2 - \xi )}{\ln (n - \eta )} \biggr]^{\lambda _{1}}. \end{aligned}$$

Hence, (9) and (10) follow. □

Lemma 2

We have the following inequality:

$$\begin{aligned} I: ={}& \sum_{n = 2}^{\infty } \sum _{m = 2}^{\infty } \frac{a_{m}b_{n}}{ \prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \\ >{}& k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1}) \Biggl\{ \sum_{m = 2}^{\infty } \frac{ \ln ^{p[1 - (\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})] - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &{}\times \Biggl\{ \sum_{n=2}^{\infty} \bigl(1-\theta_{s}(\lambda_{1},n) \bigr) \frac{\ln^{q[1 - (\frac{\lambda - \lambda_{1}}{q} + \frac{\lambda_{2}}{p})] - 1}(n - \eta )}{(n - \eta)^{1-q}}b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(11)

Proof

By reverse Hölder’s inequality (cf. [24]), we obtain

$$\begin{aligned} I: ={}& \sum_{n = 2}^{\infty } \sum _{m = 2}^{\infty } \frac{1}{\prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \biggl[ \frac{\ln ^{(\lambda _{2} - 1)p}(n - \xi )}{(n - \eta )^{1/p}}\frac{ \ln ^{(1 - \lambda _{1})/q}(m - \xi )}{(m - \xi )^{ - 1/q}}a_{m} \biggr] \\ &{}\times \biggl[\frac{\ln ^{(\lambda _{1} - 1)/q}(m - \xi )}{(m - \xi )^{1/q}}\frac{ \ln ^{(1 - \lambda _{2})/p}(n - \eta )}{(n - \eta )^{ - 1/p}}b_{n} \biggr] \\ \ge{}& \Biggl\{ \sum_{m = 2}^{\infty } \Biggl[\ln ^{\lambda _{1}}(m - \xi )\sum_{n = 2} ^{\infty } \frac{\ln ^{\lambda _{2} - 1}(n - \eta )}{\prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \frac{1}{n - \eta } \Biggr]\\ &{}\times\frac{\ln ^{p(1 - \lambda _{1}) - 1}(m - \xi )}{(m - \xi )^{1 - p}}a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &{}\times \Biggl\{ \sum_{n = 2}^{\infty } \Biggl[ \ln ^{\lambda _{2}}(n - \eta )\sum_{m = 2}^{\infty } \frac{\ln ^{\lambda _{1} - 1}(m - \xi )}{\prod_{k = 1} ^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \frac{1}{m - \xi } \Biggr]\\ &{}\times\frac{\ln ^{q(1 - \lambda _{2}) - 1}(n - \eta )}{(n - \eta )^{1 - q}}b_{n}^{q} \Biggr\} ^{\frac{1}{q}} \\ ={}& \Biggl\{ \sum_{m = 2}^{\infty } \omega _{s} (\lambda _{2},m)\frac{ \ln ^{p[1 - (\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})] - 1}(m - \xi )}{(m - \xi )^{1 - p}}a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &{}\times\Biggl\{ \sum_{n = 2}^{\infty } \varpi _{s}(\lambda _{1},n) \frac{ \ln ^{q[1 - (\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p})] - 1}(n - \eta )}{(n - \eta )^{1 - q}}b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$

Then, by (8) and (9), we have (11). □

Remark 1

By (11), for \(\lambda _{1} + \lambda _{2} = \lambda \), we find

$$\begin{aligned} &\omega _{s}(\lambda _{2},m) = \ln ^{\lambda _{1}}(m - \xi )\sum_{n = 2} ^{\infty } \frac{\ln ^{\lambda _{2} - 1}(n - \eta )}{\prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \frac{1}{n - \eta } \quad \bigl(m \in \mathrm{N}\backslash \{ 1\} \bigr), \\ &0 < \sum_{m = 2}^{\infty } \frac{\ln ^{p(1 - \lambda _{1}) - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} < \infty,\qquad 0 < \sum _{n = 2}^{ \infty } \frac{\ln ^{q(1 - \lambda _{2}) - 1}(n - \eta )}{(n - \eta )^{1 - p}} b_{n}^{q} < \infty, \end{aligned}$$

and the following inequality:

$$\begin{aligned} &\sum_{n = 2}^{\infty } \sum _{m = 2}^{\infty } \frac{a_{m}b_{n}}{ \prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \\ &\quad > k_{s}(\lambda _{1}) \Biggl[\sum _{m = 2}^{\infty } \frac{ \ln ^{p(1 - \lambda _{1}) - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} \Biggr]^{ \frac{1}{p}} \\ &\qquad{}\times\Biggl[\sum_{n = 2}^{\infty } \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr) \frac{ \ln ^{q(1 - \lambda _{2}) - 1}(n - \eta )}{(n - \eta )^{1 - q}} b_{n} ^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(12)

In particular, for \(\xi = \eta = 0\), we have \(\tilde{\theta }_{s}( \lambda _{1},n) = O(\frac{1}{\ln ^{\lambda _{1}}n}) \in (0,1)\), and

$$\begin{aligned} &\sum_{n = 2}^{\infty } \sum _{m = 2}^{\infty } \frac{a_{m}b_{n}}{ \prod_{k = 1}^{s} ( \ln ^{\lambda /s}m + c_{k}\ln ^{\lambda /s}n)} \\ &\quad > k_{s}(\lambda _{1}) \Biggl[\sum _{m = 2}^{\infty } \frac{ \ln ^{p(1 - \lambda _{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{n = 2}^{\infty } \bigl(1 - \tilde{\theta }_{s}(\lambda _{1},n) \bigr) \frac{ \ln ^{q(1 - \lambda _{2}) - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(13)

Hence, (12) is a more accurate extension of (13).

Lemma 3

For \(0 < \varepsilon < q\lambda _{2}\), we have

$$ L: = \sum_{n = 2}^{\infty } O \biggl( \frac{1}{ \ln ^{\lambda _{1} + \varepsilon + 1}(n - \eta )} \biggr)\frac{1}{n - \eta } = O(1). $$
(14)

Proof

There exist constants \(m,M > 0\) such that

$$ 0 < m\sum_{n = 2}^{\infty } \frac{1}{\ln ^{\lambda _{1} + \varepsilon + 1}(n - \eta )} \frac{1}{n - \eta } \le L \le M \Biggl[\frac{(2 - \eta )^{ - 1}}{ \ln ^{\lambda _{1} + \varepsilon + 1}(2 - \eta )} + \sum _{n = 3}^{ \infty } \frac{1}{\ln ^{\lambda _{1} + \varepsilon + 1}(n - \eta )} \frac{1}{n - \eta } \Biggr]. $$

By Hermite–Hadamard’s inequality, it follows that

$$\begin{aligned} 0 &< L \le M \biggl[\frac{(2 - \eta )^{ - 1}}{\ln ^{\lambda _{1} + \varepsilon + 1}(2 - \eta )} + \int _{\frac{5}{2}}^{\infty } \frac{1}{ \ln ^{\lambda _{1} + \varepsilon + 1}(y - \eta )} \frac{1}{y - \eta } \,dy \biggr] \\ & = M \biggl[\frac{(2 - \eta )^{ - 1}}{\ln ^{\lambda _{1} + \varepsilon + 1}(2 - \eta )} + \frac{1}{\lambda _{1} + \varepsilon } \ln ^{ - \lambda _{1} - \varepsilon } \biggl( \frac{5}{2} - \eta \biggr) \biggr] \\ &\le M \biggl[\frac{(2 - \eta )^{ - 1}}{\ln ^{\lambda _{1} + q\lambda _{2} + 1}(2 - \eta )} + \frac{1}{\lambda _{1}}\ln ^{ - \lambda _{1} - q\lambda _{2}} \biggl( \frac{5}{2} - \eta \biggr) \biggr] < \infty. \end{aligned}$$

Hence, (14) follows. □

Lemma 4

The constant factor \(k_{s}(\lambda _{1})\) in (12) is the best possible.

Proof

For \(0 < \varepsilon < q\lambda {}_{2}\), we set

$$ \tilde{a}_{m}: = \frac{\ln ^{\lambda _{1} - \frac{\varepsilon }{p} - 1}(m - \xi )}{m - \xi },\qquad\tilde{b}_{n}: = \frac{ \ln ^{\lambda _{2} - \frac{\varepsilon }{q} - 1}(n - \eta )}{n - \eta }\quad \bigl(m,n \in \mathrm{N}\backslash \{ 1\} \bigr). $$

If there exists a constant \(M \ge k_{s}(\lambda _{1})\) such that (12) is valid when replacing \(k_{s}(\lambda _{1})\) by M, then, in particular, we have

$$\begin{aligned} \tilde{I}&: = \sum_{n = 2}^{\infty } \sum _{m = 2}^{\infty } \frac{ \tilde{a}_{m}\tilde{b}_{n}}{\prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \\ &> M \Biggl[\sum_{m = 2}^{\infty } \frac{\ln ^{p(1 - \lambda _{1}) - 1}(m - \xi )}{(m - \xi )^{1 - p}} \tilde{a}_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[\sum_{n = 2}^{\infty } \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr)\frac{ \ln ^{q(1 - \lambda _{2}) - 1}(n - \eta )}{(n - \eta )^{1 - p}} \tilde{b}_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$

In view of (10) and (14), we obtain

$$\begin{aligned} \tilde{I} > {}&M \Biggl\{ \sum_{m = 2}^{\infty } \frac{\ln ^{p(1 - \lambda _{1}) - 1}(m - \xi )}{(m - \xi )^{1 - p}} \frac{ \ln ^{p\lambda _{1} - \varepsilon - p}(m - \xi )}{(m - \xi )^{p}} \Biggr\} ^{ \frac{1}{p}} \\ &{}\times \Biggl\{ \sum_{n = 2}^{\infty } \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr)\frac{ \ln ^{q(1 - \lambda _{2}) - 1}(n - \eta )}{(n - \eta )^{1 - q}} \frac{ \ln ^{q\lambda _{2} - \varepsilon - q}(n - \eta )}{(n - \eta )^{q}} \Biggr\} ^{\frac{1}{q}} \\ ={}& M \Biggl[\frac{\ln ^{ - \varepsilon - 1}(2 - \xi )}{2 - \xi } + \sum_{m = 3} ^{\infty } \frac{\ln ^{ - \varepsilon - 1}(m - \xi )}{m - \xi } \Biggr]^{ \frac{1}{p}}\\ &{}\times \Biggl[\sum _{n = 2}^{\infty } \frac{\ln ^{ - \varepsilon - 1}(n - \eta )}{n - \eta } - \sum _{n = 2}^{\infty } O \biggl(\frac{1}{\ln ^{\lambda _{1}}(n - \eta )} \biggr) \frac{\ln ^{ - \varepsilon - 1}(n - \eta )}{n - \eta } \Biggr]^{\frac{1}{q}} \\ >&{} M \biggl[\frac{\ln ^{ - \varepsilon - 1}(2 - \xi )}{2 - \xi } + \int _{2} ^{\infty } \frac{\ln ^{ - \varepsilon - 1}(x - \xi )}{x - \xi } \,dx \biggr]^{ \frac{1}{p}} \\ &{}\times\Biggl[ \int _{2}^{\infty } \frac{\ln ^{ - \varepsilon - 1}(y - \eta )}{y - \eta } \,dy - \sum _{n = 2}^{\infty } O \biggl(\frac{1}{ \ln ^{\lambda _{1} + \varepsilon + 1}(n - \eta )} \biggr)\frac{1}{n - \eta } \Biggr]^{ \frac{1}{q}} \\ ={}& \frac{M}{\varepsilon } \biggl[\frac{\varepsilon \ln ^{ - \varepsilon - 1}(2 - \xi )}{2 - \xi } + \ln ^{ - \varepsilon } (2 - \xi ) \biggr]^{\frac{1}{p}} \bigl[ \ln ^{ - \varepsilon } (2 - \eta ) - \varepsilon O(1) \bigr]^{\frac{1}{q}}. \end{aligned}$$

By (8), setting \(\hat{\lambda }_{2} = \lambda _{2} - \frac{\varepsilon }{q} \in (0,\lambda )(\hat{\lambda }_{2} \le 1,\hat{\lambda }_{1} = \lambda _{1} + \frac{\varepsilon }{q})\), we find

$$\begin{aligned} \tilde{I}={}& \sum_{m = 2}^{\infty } \Biggl\{ \ln ^{(\lambda _{1} + \frac{\varepsilon }{q})}(m - \xi )\sum_{n = 2} ^{\infty } \frac{1}{\prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c _{k}\ln ^{\lambda /s}(n - \eta )]} \frac{ \ln ^{(\lambda _{2} - \frac{\varepsilon }{q}) - 1}(n - \eta )}{n - \eta } \Biggr\} \\ &{}\times\frac{\ln ^{ - \varepsilon - 1}(m - \xi )}{m - \xi } \\ ={}& \sum_{m = 2}^{\infty } \omega _{s} ( \hat{\lambda }_{2},m)\frac{ \ln ^{ - \varepsilon - 1}(m - \xi )}{m - \xi } \le k_{s}(\hat{ \lambda }_{1}) \Biggl[\frac{\ln ^{ - 1 - \varepsilon } (2 - \xi )}{2 - \xi } + \sum _{m = 3}^{\infty } \frac{\ln ^{ - 1 - \varepsilon } (m - \xi )}{m - \xi } \Biggr] \\ \le{}& k_{s}(\hat{\lambda }_{1}) \biggl[ \frac{\ln ^{ - 1 - \varepsilon } (2 - \xi )}{2 - \xi } + \int _{2}^{\infty } \frac{\ln ^{ - 1 - \varepsilon } (x - \xi )}{x - \xi } \,dx \biggr] \\ ={}& \frac{1}{\varepsilon } k_{s}(\hat{\lambda }_{1}) \biggl[ \frac{\varepsilon \ln ^{ - 1 - \varepsilon } (2 - \xi )}{2 - \xi } + \ln ^{ - \varepsilon } (2 - \xi ) \biggr]. \end{aligned}$$

Then we have

$$\begin{aligned} &k_{s}(\hat{\lambda }_{1}) \biggl[\frac{\varepsilon \ln ^{ - 1 - \varepsilon } (2 - \xi )}{2 - \xi } + \ln ^{ - \varepsilon } (2 - \xi ) \biggr] \\ &\quad \ge \varepsilon \tilde{I} > M \biggl[\frac{\varepsilon \ln ^{ - \varepsilon - 1}(2 - \xi )}{2 - \xi } + \ln ^{ - \varepsilon } (2 - \xi ) \biggr]^{ \frac{1}{p}} \bigl[\ln ^{ - \varepsilon } (2 - \eta ) - \varepsilon O(1) \bigr]^{ \frac{1}{q}}. \end{aligned}$$

For \(\varepsilon \to 0^{ +} \), we find \(k_{s}(\lambda _{1}) \ge M\). Hence, \(M = k_{s}(\lambda _{1})\) is the best possible constant factor of (12).

Setting \(\tilde{\lambda }_{1}: = \frac{\lambda - \lambda _{2}}{p} + \frac{ \lambda _{1}}{q},\tilde{\lambda }_{2}: = \frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p}\), we find

$$ \tilde{\lambda }_{1} + \tilde{\lambda }_{2} = \frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} + \frac{\lambda - \lambda _{1}}{q} + \frac{ \lambda _{2}}{p} = \frac{\lambda }{p} + \frac{\lambda }{q} = \lambda, $$

and we can rewrite (11) as follows:

$$\begin{aligned} I >{}& k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1}) \Biggl[\sum_{m = 2}^{\infty } \frac{ \ln ^{p(1 - \tilde{\lambda }_{1}) - 1}(m - \xi )}{(m - \xi )^{1 - p}} a _{m}^{p} \Biggr]^{\frac{1}{p}} \\ &\times{}\Biggl[ \sum_{n = 2}^{\infty } \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr)\frac{\ln ^{q(1 - \tilde{\lambda }_{2}) - 1}(n - \eta )}{(n - \eta )^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(15)

 □

Lemma 5

If \(\lambda \in (\lambda _{1} + (1 - q)\lambda _{2},(1 - p)\lambda _{1} + \lambda _{2})\), the constant factor \(k_{s}^{ \frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}(\lambda _{1})\) in (15) is the best possible, then we have \(\lambda = \lambda _{1} + \lambda _{2}\).

Proof

For \(\lambda _{1} + (1 - q)\lambda _{2} < \lambda \le \lambda _{1} + \lambda _{2}\), we obtain

$$\begin{aligned} &\tilde{\lambda }_{1} \ge \frac{\lambda - \lambda _{2}}{p} + \frac{ \lambda - \lambda _{2}}{q} = \lambda - \lambda _{2} > 0, \qquad \tilde{\lambda }_{1} = \frac{\lambda }{p} - \frac{\lambda _{2}}{p} + \frac{ \lambda _{1}}{q} < \lambda, \\ &\quad 0 < \tilde{\lambda }_{1} < \lambda,0 < \tilde{\lambda }_{2} = \lambda - \tilde{\lambda }_{1} < \lambda; \end{aligned}$$

for \(\lambda _{1} + \lambda _{2} < \lambda < (1 - p)\lambda _{1} + \lambda _{2}\), we still obtain

$$\begin{aligned} &\tilde{\lambda }_{2} \ge \frac{\lambda _{2}}{q} + \frac{\lambda _{2}}{p} = \lambda _{2} > 0,\qquad \tilde{\lambda }_{2} = \frac{ \lambda }{q} - \frac{\lambda _{1}}{q} + \frac{\lambda _{2}}{p} < \lambda , \\ &\quad 0 < \tilde{\lambda }_{2} < \lambda,0 < \tilde{\lambda }_{1} = \lambda - \tilde{\lambda }_{2} < \lambda. \end{aligned}$$

Hence, we have \(\tilde{\lambda }_{i} \in (0,\lambda )\ (i = 1,2)\), and then \(k _{s}(\tilde{\lambda }_{1}) \in \mathrm{R}_{ +} \).

If the constant factor \(k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k _{s}^{\frac{1}{q}}(\lambda _{1})\) in (15) is the best possible, then, in view of (12), the unique best possible constant factor must be the form of \(k_{s}(\tilde{\lambda }_{1})\), namely

$$ k_{s}(\tilde{\lambda }_{1})= k_{s}^{\frac{1}{p}}( \lambda - \lambda _{2})k_{s}^{\frac{1}{q}}(\lambda _{1}). $$

By reverse Hölder’s inequality, we find

$$\begin{aligned} k_{s}(\tilde{\lambda }_{1})& = k_{\lambda } \biggl(\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} \biggr) \\ &= \int _{0}^{\infty } \frac{1}{\prod_{k = 1}^{s} ( u^{\lambda /s} + c _{k})} u^{\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} - 1} \,du = \int _{0}^{\infty } \frac{1}{\prod_{k = 1}^{s} ( u^{\lambda /s} + c _{k})} \bigl(u^{\frac{\lambda - \lambda _{2} - 1}{p}} \bigr) \bigl(u^{\frac{\lambda _{1} - 1}{q}} \bigr)\,du \\ &\ge \biggl( \int _{0}^{\infty } \frac{1}{\prod_{k = 1}^{s} ( u^{\lambda /s} + c_{k})} u^{\lambda - \lambda _{2} - 1} \,du \biggr)^{\frac{1}{p}} \biggl( \int _{0}^{ \infty } \frac{1}{\prod_{k = 1}^{s} ( u^{\lambda /s} + c_{k})} u^{ \lambda _{1} - 1} \,du \biggr)^{\frac{1}{q}} \\ &= k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1}). \end{aligned}$$
(16)

We conclude that (16) keeps the form of equality if and only if there exist constants A and B such that they are not all zero and (cf. [24])

$$ Au^{\lambda - \lambda _{2} - 1} = Bu^{\lambda _{1} - 1}\quad \text{a.e. in } \mathrm{R}_{ +} = (0,\infty ). $$

Assuming that \(A \ne 0\) (otherwise, \(B = A = 0\)), it follows that \(u^{\lambda - \lambda _{2} - \lambda _{1}} = \frac{A}{B}\) a.e. in \(\mathrm{R}_{ +} \), and then \(\lambda - \lambda _{2} - \lambda _{1} = 0\), namely \(\lambda = \lambda _{1} + \lambda _{2}\). □

3 Main results and particular cases

Theorem 1

Inequality (11) is equivalent to the following inequalities:

$$\begin{aligned} &J: = \Biggl\{ \sum_{n = 2}^{\infty } \frac{ \ln ^{p(\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p}) - 1}(n - \eta )}{(1 - \theta _{s}(\lambda _{1},n))^{p - 1}(n - \eta )} \Biggl[\sum_{m = 2}^{\infty } \frac{a_{m}}{\prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ &\phantom{J: }> k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1}) \Biggl\{ \sum_{m = 2}^{\infty } \frac{ \ln ^{p[1 - (\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})] - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} \Biggr\} ^{\frac{1}{p}}, \end{aligned}$$
(17)
$$\begin{aligned} &J_{1}: = \Biggl\{ \sum_{m = 2}^{\infty } \frac{ \ln ^{q(\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q}) - 1}(m - \xi )}{m - \xi } \Biggl\{ \sum_{n = 2}^{\infty } \frac{b_{n}}{\prod_{k = 1} ^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \Biggr\} ^{q} \Biggr\} ^{\frac{1}{q}} \\ &\phantom{J_{1}: }> k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1}) \Biggl\{ \sum_{n = 2}^{\infty } \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr) \frac{ \ln ^{q[1 - (\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p})] - 1}(n - \eta )}{(n - \eta )^{1 - q}} b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(18)

If the constant factor in (11) is the best possible, then so is the constant factor in (17) and (18).

Proof

Suppose that (17) is valid. By Hölder’s inequality, we have

$$\begin{aligned} I = {}&\sum_{n = 2}^{\infty } \Biggl\{ \frac{ \ln ^{\frac{ - 1}{p} + (\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p})}(n - \eta )}{(1 - \theta _{s}(\lambda _{1},n))^{1/q}(n - \eta )^{1/p}}\sum_{m = 2}^{\infty } \frac{a_{m}}{\prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \Biggr\} \\ &{}\times \biggl\{ \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr)^{\frac{1}{q}}\frac{ \ln ^{\frac{1}{p} - (\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p})}(n - \eta )}{(n - \eta )^{ - 1/p}}b_{n} \biggr\} \\ \ge{}& J \Biggl\{ \sum_{n = 2}^{\infty } \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr)\frac{ \ln ^{q[1 - (\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p})] - 1}(n - \eta )}{(n - \eta )^{1 - q}} b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(19)

Then, by (17), we obtain (11). On the other hand, assuming that (11) is valid, we set

$$\begin{aligned} &b_{n}: =\frac{ \ln ^{p(\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p}) - 1}(n - \eta )}{(1 - \theta _{s}(\lambda _{1},n))^{p - 1}(n - \eta )}\Biggl\{ \sum _{m = 2}^{\infty } \frac{a_{m}}{\prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \Biggr\} ^{p - 1},\\ &\quad n \in \mathbf{N}\backslash \{1\}. \end{aligned}$$

If \(J = 0\), then (17) is naturally valid; if \(J = \infty \), then it is impossible that makes (17) valid, namely \(J < \infty \). Suppose that \(0 < J < \infty \). By (11), we have

$$\begin{aligned} &\sum_{n = 2}^{\infty } \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr)\frac{ \ln ^{q[1 - (\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p})] - 1}(n - \eta )}{(n - \eta )^{1 - q}} b_{n}^{q} \\ &\quad = J^{p} = I > k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1}) \Biggl\{ \sum_{m = 2}^{\infty } \frac{ \ln ^{p[1 - (\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})] - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &\qquad{}\times \Biggl\{ \sum_{n = 2}^{\infty } \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr) \frac{ \ln ^{q[1 - (\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p})] - 1}(n - \eta )}{(n - \eta )^{1 - q}} b_{n}^{q} \Biggr\} ^{\frac{1}{q}}, \\ &J = \Biggl\{ \sum_{n = 2}^{\infty } \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr) \frac{ \ln ^{q[1 - (\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p})] - 1}(n - \eta )}{(n - \eta )^{1 - q}} b_{n}^{q} \Biggr\} ^{\frac{1}{p}} \\ &\phantom{J }> k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1}) \Biggl\{ \sum_{m = 2}^{\infty } \frac{ \ln ^{p[1 - (\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})] - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} \Biggr\} ^{\frac{1}{p}}, \end{aligned}$$

namely (17) follows. Hence, inequality (11) is equivalent to (17).

Suppose that (18) is valid. By Hölder’s inequality, we have

$$\begin{aligned} I={}& \sum_{m = 2}^{\infty } \biggl\{ \frac{ \ln ^{\frac{1}{q} - (\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})}(m - \xi )}{(m - \xi )^{ - 1/q}}a_{m} \biggr\} \\ &{}\times\Biggl\{ \frac{ \ln ^{\frac{ - 1}{q} + (\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})}(m - \xi )}{(m - \xi )^{1/q}}\sum _{n = 2}^{\infty } \frac{b _{n}}{\prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k} \ln ^{\lambda /s}(n - \eta )]} \Biggr\} \\ \ge{}& \Biggl\{ \sum_{m = 2}^{\infty } \frac{ \ln ^{p[1 - (\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})] - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} \Biggr\} ^{\frac{1}{p}}J_{1}. \end{aligned}$$
(20)

Then, by (18), we obtain (11). On the other hand, assuming that (11) is valid, we set

$$\begin{aligned} & a_{m}: =\frac{ \ln ^{q(\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q}) - 1}(m - \xi )}{m - \xi } \Biggl\{ \sum _{n = 2}^{\infty } \frac{b_{n}}{\prod_{k = 1} ^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \Biggr\} ^{q - 1},\\ &\quad m \in \mathrm{N}\backslash \{ 1\}. \end{aligned}$$

If \(J_{1} = 0\), then (18) is naturally valid; if \(J_{1} = \infty \), then it is impossible that makes (18) valid, namely \(J_{1} < \infty \). Suppose that \(0 < J_{1} < \infty \). By (11), we have

$$\begin{aligned} &\sum_{m = 2}^{\infty } \frac{ \ln ^{p[1 - (\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})] - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} \\ &\quad = J_{1}^{q} = I > k_{s}^{\frac{1}{p}}( \lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1}) \Biggl\{ \sum_{m = 2}^{\infty } \frac{ \ln ^{p[1 - (\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})] - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &\qquad{}\times \Biggl\{ \sum_{n = 2}^{\infty } \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr) \frac{ \ln ^{q[1 - (\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p})] - 1}(n - \eta )}{(n - \eta )^{1 - q}} b_{n}^{q} \Biggr\} ^{\frac{1}{q}}, \\ &J_{1} = \Biggl\{ \sum_{m = 2}^{\infty } \frac{ \ln ^{p[1 - (\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})] - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} \Biggr\} ^{\frac{1}{q}} \\ &\phantom{J_{1} }> k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1}) \Biggl\{ \sum_{n = 2}^{\infty } \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr) \frac{ \ln ^{q[1 - (\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p})] - 1}(n - \eta )}{(n - \eta )^{1 - q}} b_{n}^{q} \Biggr\} ^{\frac{1}{q}}, \end{aligned}$$

namely (18) follows. Hence, inequality (11) is equivalent to (17) and (18).

If the constant factor in (11) is the best possible, then so is the constant factor in (17) and (18). Otherwise, by (19) (or (20)), we would reach a contradiction that the constant factor in (11) is not the best possible. □

Theorem 2

If \(\lambda \in (\lambda _{1} + (1 - q)\lambda _{2},(1 - p)\lambda _{1} + \lambda _{2})\), then the following statements (i), (ii), (iii), and (iv) are equivalent:

  1. (i)

    \(k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1})\) is independent of \(p,q\);

  2. (ii)

    \(k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1})\) is expressed by a single integral;

  3. (iii)

    \(k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1})\) in (10) is the best possible constant factor;

  4. (iv)

    \(\lambda = \lambda _{1} + \lambda _{2}\).

If statement (iv) follows, namely \(\lambda = \lambda _{1} + \lambda _{2}\), then we have (12) and the following equivalent inequalities with the best possible constant factor \(k_{s}(\lambda _{1})\):

$$\begin{aligned} & \Biggl\{ \sum_{n = 2}^{\infty } \frac{\ln ^{p\lambda _{2} - 1}(n - \eta )}{(1 - \theta _{s}(\lambda _{1},n))^{p - 1}(n - \eta )} \Biggl[\sum_{m = 2}^{\infty } \frac{a_{m}}{\prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k} \ln ^{\lambda /s}(n - \eta )]} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ &\quad > k_{s}(\lambda _{1}) \Biggl\{ \sum _{m = 2}^{\infty } \frac{ \ln ^{p(1 - \lambda _{1}) - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} \Biggr\} ^{\frac{1}{p}}, \end{aligned}$$
(21)
$$\begin{aligned} & \Biggl\{ \sum_{m = 2}^{\infty } \frac{\ln ^{q\lambda _{1} - 1}(m - \xi )}{m - \xi } \Biggl\{ \sum_{n = 2}^{\infty } \frac{b_{n}}{\prod_{k = 1}^{s} [ \ln ^{\lambda /s}(m - \xi ) + c_{k}\ln ^{\lambda /s}(n - \eta )]} \Biggr\} ^{q} \Biggr\} ^{\frac{1}{q}} \\ &\quad > k_{s}(\lambda _{1}) \Biggl[\sum _{n = 2}^{\infty } \bigl(1 - \theta _{s}(\lambda _{1},n) \bigr)\frac{\ln ^{q(1 - \lambda _{2}) - 1}(n - \eta )}{(n - \eta )^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(22)

Proof

(i)⇒(ii). By (i), we have

$$ k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1}) = \lim_{q \to 1^{ +}} k_{s}^{\frac{1}{p}}( \lambda - \lambda _{2})k _{s}^{\frac{1}{q}}(\lambda _{1}) = k_{s}(\lambda _{1}), $$

namely \(k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}( \lambda _{1})\) is expressed by a single integral

$$ k_{s}(\lambda _{1}) = \int _{0}^{\infty } \frac{1}{\prod_{k = 1}^{s} ( u ^{\lambda /s} + c_{k})}u^{\lambda _{1} - 1} \,du. $$

(ii)⇒(iv). If \(k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{ \frac{1}{q}}(\lambda _{1})\) is expressed by a convergent single integral \(k _{s}(\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q})\), then (16) keeps the form of equality. In view of the proof of Lemma 5, it follows that \(\lambda = \lambda _{1} + \lambda _{2}\).

(iv)⇒(i). If \(\lambda = \lambda _{1} + \lambda _{2}\), then \(k_{s}^{ \frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}(\lambda _{1}) = k_{s}(\lambda _{1})\), which is independent of \(p,q\). Hence, it follows that (i) ⇔ (ii) ⇔ (iv).

(iii)⇒(iv). By Lemma 5, we have \(\lambda = \lambda _{1} + \lambda _{2}\).

(iv)⇒(iii). By Lemma 4, for \(\lambda = \lambda _{1} + \lambda _{2}\), \(k_{s}^{\frac{1}{p}}(\lambda - \lambda _{2})k_{s}^{\frac{1}{q}}(\lambda _{1})( = k_{s}(\lambda _{1}))\) is the best possible constant factor of (11). Therefore, we have (iii) ⇔ (iv).

Hence, statements (i), (ii), (iii), and (iv) are equivalent. □

Remark 2

For \(\lambda = 1,\lambda _{1} = \lambda _{2} = \frac{1}{2}\),

$$\begin{aligned} &\hat{k}_{s} \biggl(\frac{1}{2} \biggr): = \int _{0}^{\infty } \frac{t^{ - 1/2}}{ \prod_{k = 1}^{s} (t^{1/s} + c_{k})} \,dt = \frac{\pi s}{\sin (\frac{ \pi s}{2})}\sum_{k = 1}^{s} c_{k}^{\frac{s}{2} - 1} \prod_{j = 1(j \ne k)}^{s} \frac{1}{c_{j} - c_{k}}, \\ &\hat{\theta }_{s} \biggl(\frac{1}{2},n \biggr): = \frac{1}{k_{s}(\frac{1}{2})} \int _{0}^{\frac{\ln (2 - \xi )}{\ln (n - \eta )}} \frac{u^{ - 1/2}}{ \prod_{k = 1}^{s} ( u^{1/s} + c_{k})} \,du= O \biggl( \frac{1}{\ln ^{1/2}(n - \eta )} \biggr) \in (0,1), \end{aligned}$$

in (12), (21), and (22), we have the following equivalent inequalities with the best possible constant factor \(\hat{k}_{s}(\frac{1}{2})\):

$$\begin{aligned} &\sum_{n = 2}^{\infty } \sum _{m = 2}^{\infty } \frac{a_{m}b_{n}}{ \prod_{k = 1}^{s} [ \ln ^{1/s}(m - \xi ) + c_{k}\ln ^{1/s}(n - \eta )]} \\ &\quad > \hat{k}_{s} \biggl(\frac{1}{2} \biggr) \Biggl[\sum _{m = 2}^{\infty } \frac{ \ln ^{\frac{p}{2} - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} \Biggr]^{ \frac{1}{p}} \Biggl[\sum _{n = 2}^{\infty } \biggl(1 - \hat{\theta }_{s} \biggl( \frac{1}{2},n \biggr) \biggr) \frac{\ln ^{\frac{q}{2} - 1}(n - \eta )}{(n - \eta )^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$
(23)
$$\begin{aligned} & \Biggl\{ \sum_{n = 2}^{\infty } \frac{\ln ^{\frac{p}{2} - 1}(n - \eta )}{(1 - \hat{\theta }_{s}(\frac{1}{2},n))^{p - 1}(n - \eta )} \Biggl[\sum_{m = 2} ^{\infty } \frac{a_{m}}{\prod_{k = 1}^{s} [ \ln ^{1/s}(m - \xi ) + c _{k}\ln ^{1/s}(n - \eta )]} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ &\quad > \hat{k}_{s} \biggl(\frac{1}{2} \biggr) \Biggl\{ \sum _{m = 2}^{\infty } \frac{ \ln ^{\frac{p}{2} - 1}(m - \xi )}{(m - \xi )^{1 - p}} a_{m}^{p} \Biggr\} ^{ \frac{1}{p}}, \end{aligned}$$
(24)
$$\begin{aligned} & \Biggl\{ \sum_{m = 2}^{\infty } \frac{\ln ^{\frac{q}{2} - 1}(m - \xi )}{m - \xi } \Biggl\{ \sum_{n = 2}^{\infty } \frac{b_{n}}{\prod_{k = 1}^{s} [ \ln ^{1/s}(m - \xi ) + c_{k}\ln ^{1/s}(n - \eta )]} \Biggr\} ^{q} \Biggr\} ^{\frac{1}{q}} \\ &\quad > \hat{k}_{s} \biggl(\frac{1}{2} \biggr) \Biggl\{ \sum _{n = 2}^{\infty } \biggl(1 - \hat{\theta }_{s} \biggl(\frac{1}{2},n \biggr) \biggr)\frac{\ln ^{\frac{q}{2} - 1}(n - \eta )}{(n - \eta )^{1 - q}} b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(25)

4 Conclusions

In this paper, by the use of the weight coefficients, the idea of introducing parameters and Hermite–Hadamard’s inequality, a more accurate reverse Mulholland-type inequality with parameters and the equivalent forms are given in Theorem 1. The equivalent statements of the best possible constant factor related to a few parameters and some particular cases are considered in Theorem 2 and Remarks 12. The lemmas and theorems provide an extensive account of this type of inequalities.