1 Introduction

Let p be a prime number, and let \(x\in \mathbb{Q}\). Then the non-Archimedean p-adic norm \(|x|_{p}\) is defined as follows: if \(x=0\), then \(|0|_{p}=0\); if \(x\neq 0\) is an arbitrary rational number with unique representation \(x=p^{\gamma }\frac{m}{n}\), where m, n are not divisible by p, and \(\gamma =\gamma (x)\in \mathbb{Z}\), then \(|x|_{p}=p^{-\gamma }\). This norm has the following properties: \(|xy|_{p}=|x|_{p}|y|_{p}\), \(|x+y|_{p}\leq \max \{|x|_{p}, |y|_{p}\}\), and \(|x|_{p}=0\) if and only if \(x=0\). Moreover, when \(|x|_{p}\neq |y|_{p}\), we have \(|x+y|_{p}=\max \{|x|_{p}, |y|_{p}\}\). Let \(\mathbb{Q}_{p}\) be the field of p-adic numbers defined as the completion of the field of rational numbers \(\mathbb{Q}\) with respect to the non-Archimedean p-adic norm \(|\cdot |_{p}\). For \(\gamma \in \mathbb{Z}\), we denote the ball \(B_{\gamma }(a)\) with center at \(a\in \mathbb{Q}_{p}\) and radius \(p^{\gamma }\) and its boundary \(S_{\gamma }(a)\) by

$$\begin{aligned}& B_{\gamma }(a)=\bigl\{ x\in \mathbb{Q}_{p}: \vert x-a \vert _{p}\leq p^{\gamma }\bigr\} , \qquad S_{\gamma }(a)=\bigl\{ x\in \mathbb{Q}_{p}: \vert x-a \vert _{p}=p^{\gamma }\bigr\} , \end{aligned}$$

respectively. It is easy to see that

$$ B_{\gamma }(a)=\bigcup_{k\leq \gamma }S_{k}(a). $$

For \(n\in \mathbb{N}\), the space \(\mathbb{Q}_{p}^{n}=\mathbb{Q}_{p} \times \cdots \times \mathbb{Q}_{p}\) consists of all points \({x}=(x_{1},\ldots , x_{n})\) where \(x_{i}\in \mathbb{Q}_{p}\), \(i=1,\dots ,n\), \(n\geq 1\). The p-adic norm of \(\mathbb{Q}_{p}^{n}\) is defined by

$$ \vert {x} \vert _{p}=\max_{1\leq i\leq n}{ \vert x_{i} \vert _{p}}, \quad {x}\in \mathbb{Q}_{p}^{n}. $$

Thus it is easy to see that \(|{x}|_{p}\) is a non-Archimedean norm on \(\mathbb{Q}_{p}^{n}\). The balls \(B_{\gamma }({a})\) and the sphere \(S_{\gamma }({a})\) in \(\mathbb{Q}_{p}^{n}\) for \(\gamma \in \mathbb{Z}\) are defined similarly to the case \(n=1\).

Since \(\mathbb{Q}_{p}^{n}\) is a locally compact commutative group under addition, by the standard analysis there exists the Haar measure dx on the additive group \(\mathbb{Q}_{p}^{n}\) normalized by \(\int _{B_{0}}dx=|B _{0}|_{H}=1\), where \(|E|_{H}\) denotes the Haar measure of a measurable set \(E\subset \mathbb{Q}_{p}^{n}\). Then by a simple calculation the Haar measures of any balls and spheres can be obtained. From the integral theory it is easy to see that \(|B_{\gamma }({a})|_{H}=p^{n\gamma }\) and \(|S_{\gamma }({a})|_{H}=p^{n\gamma }(1-p^{-n})\) for any \({a}\in \mathbb{Q}_{p}^{n}\). For a more complete introduction to the p-adic analysis, we refer to [1,2,3,4,5,6,7,8] and the references therein.

The p-adic numbers have been applied in the string theory, turbulence theory, statistical mechanics, quantum mechanics, and so forth (see [1, 9, 10] for detail). In the past few years, there is an increasing interest in the study of harmonic analysis on p-adic field (see [5,6,7,8] for detail).

Let \(\varOmega \in L^{\infty }(\mathbb{Q}_{p}^{n})\) be such that \(\varOmega (p^{j}x)=\varOmega (x)\) for all \(j\in \mathbb{Z}\) and \(\int _{|x|_{p}=1}\varOmega (x)\,dx=0\). Then the p-adic singular integral operators defined by Taibleson [5] are as follows:

$$ T_{k}(f) (x)= \int _{ \vert y \vert _{p}>p^{k}}f(x-y)\frac{\varOmega (y)}{ \vert y \vert _{p}^{n}}\,dz \quad \text{for } k\in \mathbb{Z}. $$

The p-adic singular integral operator T is defined as the limit of \(T_{k}\) as k goes to −∞.

Moreover, let \(\overrightarrow{b}=(b_{1},b_{2},\ldots,b_{m})\), where \(b_{i}\in L_{\mathrm{loc}}{(\mathbb{Q}_{p}^{n})}\) for \(1\leq i\leq m\). Then the higher commutator generated by b⃗ and \(T_{k}\) can be defined as

$$ T_{k}^{\vec{b}}f(x)= \int _{ \vert y \vert _{p}>p^{k}}\prod_{i=1}^{m} \bigl(b_{i}(x)-b _{i}(x-y)\bigr)f(x-y)\frac{\varOmega (y)}{ \vert y \vert _{p}^{n}}\,dz \quad \text{for } k\in \mathbb{Z}, $$

and the commutator generated by \(\overrightarrow{b}=(b_{1},b_{2},\ldots,b _{m})\) and the p-adic singular integral operator T is defined as the limit of \(T_{k}^{\vec{b}} \) as k goes to −∞.

Under some conditions, the authors in [5, 11] showed that \(T_{k}\) were of type \((q, q)\) for \(1 < q < \infty \) and of weak type \((1,1)\) on local fields. Wu et al. [12] established the boundedness of \(T_{k}\) on p-adic central Morrey spaces. Furthermore, the λ-central BMO estimates for commutators of these singular integral operators on p-adic central Morrey spaces were obtained in [12]. Moreover, in the p-adic linear space \(\mathbb{Q}_{p} ^{n}\), Volosivets [13] gave sufficient conditions for the boundedness of the maximal function and Riesz potential in p-adic generalized Morrey spaces. Mo et al. [14] established the boundedness of the commutators generated by the p-adic Riesz potential and p-adic generalized Campanato functions in p-adic generalized Morrey spaces.

Motivated by the works of [12,13,14], we consider the boundedness of \(T_{k}\) on the p-adic generalized Morrey type spaces, as well as the boundedness of the commutators generated by \(T_{k}\) and p-adic generalized Campanato functions.

Throughout this paper, the letter C will be used to denote constants varying from line to line. The relation \(A\lesssim B\) means that \(A\leq CB\) with some positive constant C independent of appropriate quantities.

2 Some notation and lemmas

Definition 2.1

([13])

Let \(1\leq q<\infty \), and let \(\omega (x)\) be a nonnegative measurable function in \(\mathbb{Q}_{p} ^{n} \). A function \(f\in L^{q}_{\mathrm{loc}}(\mathbb{Q}_{p}^{n} )\) is said to belong to the generalized Morrey space \(GM_{q,\omega }(\mathbb{Q}_{p} ^{n} )\) if

$$ \Vert f \Vert _{GM_{q,\omega }}=\sup_{a\in \mathbb{Q}^{n}_{p},\gamma \in \mathbb{Z}}\frac{1}{ \omega (B_{\gamma }(a))} \biggl(\frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert f(y) \bigr\vert ^{q}\,dy \biggr)^{1/q}< \infty , $$

where \(\omega (B_{\gamma }(a))=\int _{B_{\gamma }(a)}\omega (x)\,dx\).

Let \(\lambda \in \mathbb{R}\). If \(\omega (B_{\gamma }(a))=|B_{\gamma }(a)|^{\lambda }\), then \(GM_{q,\omega }(\mathbb{Q}_{p}^{n} )\) is the classical Morrey space \(M_{q,\lambda }(\mathbb{Q}_{p}^{n} )\). About the generalized Morrey space, see [15], and for the classical Morrey spaces, see [16] and so on.

Moreover, let \(\lambda \in \mathbb{R}\) and \(1\leq q<\infty \). The p-adic central Morrey space \(CM_{q,\lambda }(\mathbb{Q}^{n}_{p})\) (see [8]) is defined by

$$ \Vert f \Vert _{CM_{q,\lambda }}=\sup_{\gamma \in \mathbb{Z}} \biggl( \frac{1}{ \vert B _{\gamma }(0) \vert _{H}^{1+\lambda q}} \int _{B_{\gamma }(0)} \bigl\vert f(y) \bigr\vert ^{q}\,dy \biggr)^{1/q}< \infty . $$

Definition 2.2

([17])

For \(0<\beta <1\), the the p-adic Lipschitz space \(\varLambda _{\beta }(\mathbb{Q}^{n}_{p})\) is defined as the set of all functions \(f: \mathbb{Q}_{p}^{n}\mapsto \mathbb{C}\) such that

$$ \Vert f \Vert _{\varLambda _{\beta }(\mathbb{Q}_{p}^{n})}=\sup_{x,h\in \mathbb{Q}_{p}^{n}, h\neq 0} \frac{ \vert f(x+h)-f(x) \vert }{ \vert h \vert ^{ \beta}_{p}} < \infty . $$

Definition 2.3

([13])

Let B be a ball in \(\mathbb{Q} _{p}^{n}\), \(1\leq q<\infty \), and let \(\omega (x)\) be a nonnegative measurable function in \(\mathbb{Q}_{p}^{n} \). A function \(f\in L^{q} _{\mathrm{loc}}(\mathbb{Q}_{p}^{n} )\) is said to belong to the generalized Campanato space \(GC_{q,\omega }(\mathbb{Q}_{p}^{n} )\) if

$$ \Vert f \Vert _{GC_{q,\omega }}=\sup_{a\in \mathbb{Q}^{n}_{p},\gamma \in \mathbb{Z}}\frac{1}{ \omega (B_{\gamma }(a))} \biggl(\frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert f(y)-f_{B_{\gamma }(a)} \bigr\vert ^{q}\,dy \biggr)^{1/q}< \infty , $$

where \(f_{B_{\gamma }(a)}=\frac{1}{|B_{\gamma }(a)|_{H}} \int _{B_{\gamma }(a)}f(x)\,dx\) and \(\omega (B_{\gamma }(a))= \int _{B_{\gamma }(a)}\omega (x)\,dx\).

The classical Campanato spaces can be found in [18, 19], and so on. The important particular case of \(GC_{q,\omega }( \mathbb{Q}_{p}^{n} )\) is \(BMO_{q,\lambda }(\mathbb{Q}_{p}^{n} )\), where \(1< q<\infty \) and \(0<\lambda <1/n\). The central BMO space \(CBMO_{q, \lambda }(\mathbb{Q}_{p}^{n} )\) is defined by

$$ \Vert f \Vert _{CBMO^{q,\lambda }(\mathbb{Q}_{p}^{n} )}=\sup_{\gamma \in \mathbb{Z}}\frac{1}{ \vert B_{\gamma }(0) \vert _{H}^{\lambda }} \biggl(\frac{1}{ \vert B_{\gamma }(0) \vert _{H}} \int _{B_{\gamma }(0)} \bigl\vert f(y)-f _{B_{\gamma }(0)} \bigr\vert ^{q}\,dy \biggr)^{1/q}< \infty . $$
(2.1)

Lemma 2.1

([14])

Let \(1\leq q<\infty \), and let ω be a nonnegative measurable function. Let \(b\in GC_{q, \omega }(\mathbb{Q}_{p}^{n} )\). Then

$$ \vert b_{B_{k}(a)}-b_{B_{j}(a)} \vert \leq \Vert b \Vert _{GC_{q,\omega }} \vert j-k \vert \max \bigl\{ \omega \bigl(B_{k}(a) \bigr),\omega \bigl(B_{j}(a)\bigr)\bigr\} $$

for \(j,k\in \mathbb{Z}\) and any fixed \(a\in \mathbb{Q}_{p}^{n}\).

Thus, for \(j>k\), from Lemma 2.1 we deduce that

$$ \biggl( \int _{B_{j}(a)} \bigl\vert b(y)-b_{B_{k}(a)} \bigr\vert ^{q}\,dy \biggr)^{1/q} \leq (j+1-k) \bigl\vert B _{j}(a) \bigr\vert _{H}^{1/q}\omega \bigl(B_{j}(a)\bigr) \Vert b \Vert _{GC_{q,\omega }}. $$
(2.2)

Lemma 2.2

([5])

Let \(\varOmega \in L^{\infty }( \mathbb{Q}_{p}^{n})\) be such that \(\varOmega (p^{j}x)=\varOmega (x)\) for all \(j\in \mathbb{Z}\) and \(\int _{|x|_{p}=1}\varOmega (x)\,dx=0\). If

$$ \sup_{ \vert y \vert _{p}=1}\sum_{j=1}^{\infty } \int _{ \vert x \vert _{p}=1} \bigl\vert \varOmega \bigl(x+p^{j}y \bigr)-\varOmega (x) \bigr\vert \,dx< \infty , $$

then for \(1 < p <\infty \), there is a constant \(C > 0\) such that

$$ \bigl\Vert T_{k}(f) \bigr\Vert _{L^{p}(\mathbb{Q}_{p}^{n})}\leq C \Vert f \Vert _{L^{p}(\mathbb{Q} _{p}^{n})} $$

for \(k\in \mathbb{Z}\), where C is independent of f and \(k \in {\mathbb{Z}}\).

Furthermore, \(T(f) = \lim_{k\rightarrow -\infty }T_{k}(f)\) exists in the \(L^{p}\) norm, and

$$ \bigl\Vert T(f) \bigr\Vert _{L^{p}(\mathbb{Q}_{p}^{n})}\leq C \Vert f \Vert _{L^{p}(\mathbb{Q}_{p} ^{n})}. $$

Moreover, on the p-adic field, the Riesz potential \(I_{\alpha }^{p}\) is defined by

$$ I^{\alpha }_{p}f(x)=\frac{1}{\varGamma _{n}(\alpha )} \int _{\mathbb{Q}_{p}^{n}}\frac{f(y)}{ \vert x-y \vert _{p}^{n-\alpha }}\,dy, $$

where \(\varGamma _{n}(\alpha )=(1-p^{\alpha -n})/(1-p^{-\alpha })\) for \(\alpha \in \mathbb{C}\), \(\alpha \neq 0\).

Lemma 2.3

([14])

Let α be a complex number with \(0< \operatorname{Re}\alpha <n\), and let \(1< r<\infty \), \(1< q< n/ \operatorname{Re}\alpha \), and \(0<1/r=1/q- \operatorname{Re}\alpha /n\). Suppose that both ω and ν are nonnegative measurable functions such that

$$ \sum_{j={\gamma }}^{\infty }p^{j \operatorname{Re}\alpha } \frac{\nu (B_{j}(a))}{ \omega (B_{\gamma }(a))}=C< \infty $$

for any \(a\in \mathbb{Q}^{n}_{p}\) and \(\gamma \in \mathbb{Z}\). Then the Riesz potential \(I^{\alpha }_{p}\) is bounded from \(GM_{q,\nu }\) to \(GM_{r,\omega }\).

3 Main results

In this section, we state the main results of the paper.

Theorem 3.1

Let \(1< q<\infty \), and let \(\varOmega (p ^{j}x)=\varOmega (x)\) for all \(j\in \mathbb{Z}\), \(\int _{|x|_{p}=1}\varOmega (x)\,dx=0\), and

$$ \sup_{ \vert y \vert _{p}=1}\sum_{j=1}^{\infty } \int _{ \vert x \vert _{p}=1} \bigl\vert \varOmega \bigl(x+p^{j}y \bigr)-\varOmega (x) \bigr\vert \,dx< \infty . $$

Suppose that both ω and ν are nonnegative measurable functions such that

$$ \sum_{j={\gamma }}^{\infty }\nu \bigl(B_{j}(a) \bigr)/\omega \bigl(B_{\gamma }(a)\bigr)=C< \infty $$
(3.1)

for any \(\gamma \in \mathbb{Z}\) and \(a\in \mathbb{Q}^{n}_{p}\). Then the singular integral operators \(T_{k}\) are bounded from \(GM_{q,\nu }\) to \(GM_{q,\omega }\) for all \(k\in \mathbb{Z}\). Moreover, \(T(f)=\lim_{k\rightarrow -\infty }T_{k}(f)\) exists in \(GM_{q,\omega }\), and the operator T is bounded from \(GM_{q,\nu }\) to \(GM_{q,\omega }\).

Corollary 3.1

Let \(1< q<\infty \), \(\lambda <0\), and let \(\varOmega \in L^{\infty }(\mathbb{Q}_{p}^{n})\) be such that \(\varOmega (p ^{j}x)=\varOmega (x)\) for all \(j\in \mathbb{Z}\), \(\int _{|x|_{p}=1}\varOmega (x)\,dx=0\), and

$$ \sup_{ \vert y \vert _{p}=1}\sum_{j=1}^{\infty } \int _{ \vert x \vert _{p}=1} \bigl\vert \varOmega \bigl(x+p^{j}y \bigr)-\varOmega (x) \bigr\vert \,dx< \infty . $$

Then the operators \(T_{k}\) and T are bounded on the space \(M_{q,\lambda }\) for all \(k\in \mathbb{Z}\).

In fact, for \(\lambda <0\), taking \(\omega (B)=\nu (B)=|B|_{H}^{\lambda }\) in Theorem 3.1, we obtain Corollary 3.1. If the Morrey space \(M_{q,\lambda }(\mathbb{Q}_{p}^{n} )\) is replaced by the central Morrey space \(CM_{ q,\lambda }(\mathbb{Q}_{p}^{n} )\) in Corollary 3.1, then the conclusion is that of Theorem 4.1 in [12].

Theorem 3.2

Let \(\varOmega \in L^{\infty }(\mathbb{Q}_{p} ^{n})\) be such that \(\varOmega (p^{j}x)=\varOmega (x)\) for all \(j\in \mathbb{Z}\), \(\int _{|x|_{p}=1}\varOmega (x)\,dx=0\), and

$$ \sup_{ \vert y \vert _{p}=1}\sum_{j=1}^{\infty } \int _{ \vert x \vert _{p}=1} \bigl\vert \varOmega \bigl(x+p^{j}y \bigr)-\varOmega (x) \bigr\vert \,dx< \infty . $$

Let \(0<\beta _{i}<1\) for \(i=1,2,\dots ,m\) be such that \(0<\beta =\sum_{i=1}^{m}\beta _{i}<n\), and let \(1< r<\infty \) and \(1< q< n/\beta \) be such that \(1/r=1/q-\beta /n\). Suppose that \(b_{i}\in {\varLambda _{\beta _{i}}}\), \(i=1,2, \dots ,m\), and both ω and ν are nonnegative measurable functions such that

$$ \sum_{j={\gamma }}^{\infty }p^{j\beta }\nu \bigl(B_{j}(a)\bigr)/\omega \bigl(B_{ \gamma }(a)\bigr)=C< \infty $$
(3.2)

for any \(\gamma \in \mathbb{Z}\) and \(a\in \mathbb{Q}^{n}_{p}\). Then the commutators \(T_{k}^{\vec{b}}\) are bounded from \(GM_{q,\nu }\) to \(GM_{r,\omega }\) for all \(k\in \mathbb{Z}\). Moreover, the commutator \(T^{\vec{b}}(f)=\lim_{k\rightarrow -\infty }T_{k}^{\vec{b}}(f)\) exists in the space of \(GM_{q,\omega }\), and \(T^{\vec{b}}\) is bounded from \(GM_{q,\nu }\) to \(GM_{q,\omega }\).

Theorem 3.3

Let \(\varOmega \in L^{\infty }(\mathbb{Q} _{p}^{n})\) be such that \(\varOmega (p^{j}x)=\varOmega (x)\) for all \(j\in \mathbb{Z}\), \(\int _{|x|_{p}=1}\varOmega (x)\,dx=0\), and

$$ \sup_{ \vert y \vert _{p}=1}\sum_{j=1}^{\infty } \int _{ \vert x \vert _{p}=1} \bigl\vert \varOmega \bigl(x+p^{j}y \bigr)-\varOmega (x) \bigr\vert \,dx< \infty . $$

Let \(1< q,r,q_{1},\dots, q_{m}<\infty \) be such that \(1/r=1/q+1/q_{1}+1/q _{2}+\cdots +1/q_{m}\). Suppose that ω, ν, and \(\nu _{i}\) (\(i=1,2,\dots ,m\)) are nonnegative measurable functions. Suppose that \(b_{i}\in GC_{q_{i},\nu _{i}}(\mathbb{Q}_{p}^{n} )\), \(i=1,2,\dots ,m\), and the functions ω, ν, and \(\nu _{i}\) (\(i=1,2,\dots ,m\)) satisfy the following conditions:

  1. (i)

    \(\prod_{i=1}^{m}\nu _{i}(B_{\gamma }(a))\nu (B_{\gamma }(a))/ \omega (B_{\gamma }(a))=C<\infty \),

  2. (ii)

    \(\sum_{j=\gamma +1}^{\infty }\prod_{i=1}^{m}\nu _{i}(B _{j}(a))(j+1-\gamma )^{m}\nu (B_{j}(a))/\omega (B_{\gamma }(a))=C< \infty \)

for any \(\gamma \in \mathbb{Z}\) and \(a\in \mathbb{Q}^{n}_{p}\). Then the commutators \(T_{k}^{\vec{b}}\) are bounded from \(GM_{q,\nu }\) to \(GM_{r,\omega }\) for all \(k\in \mathbb{Z}\). The commutator \(T^{ \vec{b}}=\lim_{k\rightarrow -\infty }T_{k}^{\vec{b}}\) exists in the space of \(GM_{q,\omega }\), and \(T^{\vec{b}}\) is bounded from \(GM_{q,\nu }\) to \(GM_{q,\omega }\).

Corollary 3.2

Let \(\varOmega \in L^{\infty }( \mathbb{Q}_{p}^{n})\) be such that \(\varOmega (p^{j}x)=\varOmega (x)\) for all \(j\in \mathbb{Z}\), \(\int _{|x|_{p}=1}\varOmega (x)\,dx=0\), and

$$ \sup_{ \vert y \vert _{p}=1}\sum_{j=1}^{\infty } \int _{ \vert x \vert _{p}=1} \bigl\vert \varOmega \bigl(x+p^{j}y \bigr)-\varOmega (x) \bigr\vert \,dx< \infty . $$

Let \(1< q,r,q_{1},\dots, q_{m}<\infty \) be such that \(1/r=1/q+1/q_{1}+1/q _{2}+\cdots +1/q_{m}\). Let \(0\leq \lambda _{1},\dots ,\lambda _{m}<1/n\), \(\lambda <-\sum_{i=1}^{m}\lambda _{i}\), and \(\tilde{\lambda }= \sum_{i=1}^{m}\lambda _{i}+\lambda \). If \(b_{i}\in BMO_{q_{i}, \lambda _{i}}(\mathbb{Q}_{p}^{n} )\), then the commutators \(T_{k}^{ \vec{b}}\) and \(T^{\vec{b}}\) are bounded from \(M_{q,\lambda }\) to \(M_{r,\tilde{\lambda }}\) for all \(k\in \mathbb{Z}\).

Moreover, let \(1< r,q,q_{1}<\infty \) be such that \(1/r=1/q+1/q_{1}\). Let \(0\leq \lambda _{1}<1/n\), \(\lambda <-\lambda _{1}\), and \(\tilde{\lambda }=\lambda _{1}+\lambda \). If \(b\in CBMO_{q_{1},\lambda _{1}}(\mathbb{Q}_{p}^{n} )\), then from Corollary 3.1 it follows that the commutators \(T_{k}^{b}=[T_{k}, b]\) and \(T^{b}=[T, b]\) are bounded from \(CM_{q,\lambda }\) to \(CM_{r,\tilde{\lambda }}\) for all \(k\in \mathbb{Z}\). These results are those of Theorem 4.2 in [12].

4 Proof of Theorems 3.13.3

Let us first give the proof of Theorem 3.1.

For any fixed \(\gamma \in \mathbb{Z}\) and \(a\in \mathbb{Q}^{n}_{p}\), it is easy to see that

$$\begin{aligned}& \frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert T_{k}(f) (x) \bigr\vert ^{q}\,dx \biggr)^{1/q} \\& \quad \leq \frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert T_{k}(f) (f \chi _{B_{\gamma }(a)}) (x) \bigr\vert ^{q}\,dx \biggr)^{1/q} \\& \qquad {}+\frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert T_{k}(f \chi _{B^{c}_{\gamma }(a)}) (x) \bigr\vert ^{q}\,dx \biggr)^{1/q} \\& \quad :=I+II, \end{aligned}$$
(4.1)

where \(B^{c}_{\gamma }(a)\) is the complement to \(B_{\gamma }(a)\) in \(\mathbb{Q}^{n}_{p}\).

Using Lemma 2.2 and (3.1), it follows that

$$\begin{aligned} I \lesssim &\frac{1}{\omega (B_{\gamma }(a))}\frac{1}{ \vert B_{\gamma }(a) \vert _{H} ^{1/q}} \biggl( \int _{B_{\gamma }(a)} \bigl\vert f(x) \bigr\vert ^{q}\,dx \biggr)^{1/q} \\ =&\frac{\nu (B_{\gamma }(a))}{\omega (B_{\gamma }(a))}\frac{1}{ \nu (B_{\gamma }(a))} \biggl(\frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert f(x) \bigr\vert ^{q}\,dx \biggr)^{1/q} \\ \lesssim & \Vert f \Vert _{GM_{q,\nu }}. \end{aligned}$$
(4.2)

For II, let us first estimate \(|T_{k}(f\chi _{B^{c}_{\gamma }(a)})(x)|\).

Since \(x\in B_{\gamma }(a)\) and \(\varOmega \in L^{\infty }(\mathbb{Q} _{p}^{n})\), we have

$$\begin{aligned} \bigl\vert T_{k}(f\chi _{B^{c}_{\gamma }(a)}) (x) \bigr\vert =& \biggl\vert \int _{ \vert y \vert _{p}>p^{k}}(f \chi _{B^{c}_{\gamma }(a)}) (x-y)\frac{\varOmega (y)}{ \vert y \vert _{p}^{n}}\,dy \biggr\vert \\ =& \biggl\vert \int _{ \vert x-z \vert _{p}>p^{k}}(f\chi _{B^{c}_{\gamma }(a)}) (z)\frac{ \varOmega (x-z)}{ \vert x-z \vert _{p}^{n}}\,dz \biggr\vert \\ \lesssim& \int _{B^{c}_{\gamma }(a)}\frac{ \vert f(z) \vert }{ \vert x-z \vert _{p}^{n}}\,dz \\ \lesssim& \sum_{j=\gamma +1}^{\infty } \int _{S_{j}(a)}p^{-jn} \bigl\vert f(y) \bigr\vert \,dy \\ \leq& \sum_{j=\gamma +1}^{\infty }p^{-jn} \biggl( \int _{B_{j}(a)} \bigl\vert f(y) \bigr\vert ^{q}\,dy \biggr)^{1/q} \bigl\vert B_{j}(a) \bigr\vert _{H}^{1-1/q} \\ =& \Vert f \Vert _{GM_{q,\nu }}\sum_{j=\gamma +1}^{\infty } \nu \bigl(B_{j}(a)\bigr). \end{aligned}$$
(4.3)

Thus from (3.1) and (4.3) it follows that

$$\begin{aligned} II =&\frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert T_{k}(f \chi _{B^{c}_{\gamma }(a)}) (x) \bigr\vert ^{q}\,dx \biggr)^{1/q} \\ \lesssim & \Vert f \Vert _{GM_{q,\nu }}\sum_{j=\gamma +1}^{\infty } \nu \bigl(B_{j}(a)\bigr)/\omega \bigl(B_{\gamma }(a)\bigr) \\ \lesssim & \Vert f \Vert _{GM_{q,\nu }}. \end{aligned}$$
(4.4)

Combining the estimates of (4.1), (4.2), and (4.4), we have

$$ \frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert T_{k}(f) (x) \bigr\vert ^{q}\,dx \biggr)^{1/q} \lesssim \Vert f \Vert _{GM_{q,\nu }}, $$

which means that \(T_{k}\) is bounded from \(GM_{q,\nu }\) to \(GM_{q, \omega }\) for all \(k\in \mathbb{Z}\).

Moreover, from Lemma 2.2 and the definition of \(GM_{q,\omega }( \mathbb{Q}_{p}^{n} )\) it is obvious that \(T(f)=\lim_{k\rightarrow -\infty }T_{k}(f)\) exists in \(GM_{q,\omega }\) and the operator T is bounded from \(GM_{q,\nu }\) to \(GM_{q,\omega }\).

Proof of Theorem 3.2

For any \(x\in \mathbb{Q}^{n}_{p}\), since \(\varOmega \in L^{\infty }( \mathbb{Q}_{p}^{n})\) and \(b_{i}\in {\varLambda _{\beta _{i}}}\), \(i=1,2,\dots ,m\), it is easy to see that

$$\begin{aligned}& \bigl\vert T_{k}^{\vec{b}}f(x) \bigr\vert \\& \quad \leq \int _{ \vert y \vert _{p}>p^{k}}\prod_{i=1}^{m} \bigl\vert b_{i}(x)-b_{i}(x-y) \bigr\vert \bigl\vert f(x-y) \bigr\vert \frac{ \vert \varOmega (y) \vert }{ \vert y \vert _{p}^{n}}\,dy \\& \quad \lesssim \int _{\mathbb{Q}_{p}^{n}}\frac{ \vert f(z) \vert }{ \vert x-z \vert _{p}^{n-\beta }}\,dz \\& \quad \lesssim I^{\beta }_{p}\bigl( \vert f \vert \bigr) (x). \end{aligned}$$

Thus from Lemma 2.3 it is obvious that the commutators \(T_{k}^{ \vec{b}}\) are bounded from \(GM_{q,\nu }\) to \(GM_{r,\omega }\) for all \(k\in \mathbb{Z}\).

Moreover, from the definition of \(GM_{q,\omega }(\mathbb{Q}_{p}^{n} )\) it is obvious that \(T^{\vec{b}}(f)=\lim_{k\rightarrow -\infty }T_{k}^{\vec{b}}(f)\) exists in the space of \(GM_{q,\omega }\), and the commutator \(T^{\vec{b}}\) is bounded from \(GM_{q,\nu }\) to \(GM_{q, \omega }\). □

Proof of Theorem 3.3

Without loss of generality, we need only to show that the conclusion holds for \(m=2\).

For any fixed \(\gamma \in \mathbb{Z}\) and \(a\in \mathbb{Q}^{n}_{p}\), we write \(f^{0}=f\chi _{B_{\gamma }(a)}\) and \(f^{\infty }=f \chi _{B^{c}_{\gamma }(a)}\). Then

$$\begin{aligned}& \frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert T_{k}^{(b_{1},b _{2})}(f) (x) \bigr\vert ^{r}\,dx \biggr)^{1/r} \\& \quad \leq \frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert \bigl(b_{1}(x)-(b _{1})_{B_{\gamma }(a)}\bigr) \bigl(b_{2}(x)-(b_{2})_{B_{\gamma }(a)} \bigr)T_{k}\bigl(f^{0}\bigr) (x) \bigr\vert ^{r} \,dx \biggr)^{1/r} \\& \qquad {}+\frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert \bigl(b_{1}(x)-(b _{1})_{B_{\gamma }(a)}\bigr)T_{k}\bigl(\bigl(b_{2}-(b_{2})_{B_{\gamma }(a)} \bigr)f^{0}\bigr) (x) \bigr\vert ^{r}\,dx \biggr)^{1/r} \\& \qquad {}+\frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert \bigl(b_{2}(x)-(b _{2})_{B_{\gamma }(a)}\bigr)T_{k}\bigl(\bigl(b_{1}-(b_{1})_{B_{\gamma }(a)} \bigr)f^{0}\bigr) (x) \bigr\vert ^{r}\,dx \biggr)^{1/r} \\& \qquad {}+\frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert T_{k}\bigl( \bigl(b_{1}-(b _{1})_{B_{\gamma }(a)}\bigr) \bigl(b_{2}-(b_{2})_{B_{\gamma }(a)}\bigr)f^{0} \bigr) (x) \bigr\vert ^{r}\,dx \biggr)^{1/r} \\& \qquad {}+\frac{1}{\omega (B_{\gamma }(a))} \\& \qquad {}\times \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert \bigl(b_{1}(x)-(b _{1})_{B_{\gamma }(a)}\bigr) \bigl(b_{2}(x)-(b_{2})_{B_{\gamma }(a)} \bigr)T_{k}\bigl(f^{ \infty }\bigr) (x) \bigr\vert ^{r} \,dx \biggr)^{1/r} \\& \qquad {}+\frac{1}{\omega (B_{\gamma }(a))} \\& \qquad {}\times \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert \bigl(b_{1}(x)-(b _{1})_{B_{\gamma }(a)}\bigr)T_{k}\bigl(\bigl(b_{2}-(b_{2})_{B_{\gamma }(a)} \bigr)f^{ \infty }\bigr) (x) \bigr\vert ^{r}\,dx \biggr)^{1/r} \\& \qquad {}+\frac{1}{\omega (B_{\gamma }(a))} \\& \qquad {}\times \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert \bigl(b_{2}(x)-(b _{2})_{B_{\gamma }(a)}\bigr)T_{k}\bigl(\bigl(b_{1}-(b_{1})_{B_{\gamma }(a)} \bigr)f^{ \infty }\bigr) (x) \bigr\vert ^{r}\,dx \biggr)^{1/r} \\& \qquad {}+\frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert T_{k}\bigl( \bigl(b_{1}-(b _{1})_{B_{\gamma }(a)}\bigr) \bigl(b_{2}-(b_{2})_{B_{\gamma }(a)}\bigr)f^{\infty } \bigr) (x) \bigr\vert ^{r}\,dx \biggr)^{1/r} \\& \quad =:E_{1}+E_{2}+E_{3}+E_{4}+E_{5}+E_{6}+E_{7}+E_{8}. \end{aligned}$$
(4.5)

We further estimate every part.

Since \(1/r=1/q+1/q_{1}+1/q_{2}\), from Hölder’s inequality, Lemma 2.2, and (i) it follows that

$$\begin{aligned} E_{1} =&\frac{1}{\omega (B_{\gamma }(a))} \\ & {}\times \biggl(\frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert \bigl(b_{1}(x)-(b_{1})_{B_{\gamma }(a)} \bigr) \bigl(b _{2}(x)-(b_{2})_{B_{\gamma }(a)} \bigr)T_{k}\bigl(f^{0}\bigr) (x) \bigr\vert ^{r} \,dx \biggr)^{1/r} \\ \leq &\frac{1}{\omega (B_{\gamma }(a)) \vert B_{\gamma }(a) \vert _{H}^{1/r}} \prod_{i=1}^{2} \biggl( \int _{B_{\gamma }(a)} \bigl\vert b_{i}(x)-(b_{i})_{B _{\gamma }(a)} \bigr\vert ^{q_{i}}\,dx \biggr)^{1/q_{i}} \\ &{}\times \biggl( \int _{B_{\gamma }(a)} \bigl\vert T _{k}\bigl(f^{0} \bigr) (x) \bigr\vert ^{q}\,dx \biggr)^{1/{q}} \\ \lesssim &\frac{\nu _{1}(B_{\gamma }(a))\nu _{2}(B_{\gamma }(a))}{ \omega (B_{\gamma }(a)) \vert B_{\gamma }(a) \vert _{H}^{1/q}}\prod_{i=1} ^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \biggl( \int _{B_{\gamma }(a)} \bigl\vert f(x) \bigr\vert ^{q}\,dx \biggr)^{1/q} \\ \leq &\frac{\nu (B_{\gamma }(a))\nu _{1}(B_{\gamma }(a))\nu _{2}(B_{ \gamma }(a))}{\omega (B_{\gamma }(a))}\prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }} \\ \lesssim &\prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }}. \end{aligned}$$

Let \(1/\bar{q}=1/q+1/q_{2}\). Then \(1/r=1/q_{1}+1/\bar{q}\). Thus, from Hölder’s inequality, Lemma 2.2, and (i) we obtain

$$\begin{aligned} E_{2} =& \frac{1}{\omega (B_{\gamma }(a))} \biggl(\frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert \bigl(b_{1}(x)-(b_{1})_{B_{\gamma }(a)} \bigr)T _{k}\bigl(\bigl(b_{2}-(b_{2})_{B_{\gamma }(a)} \bigr)f^{0}\bigr) (x) \bigr\vert ^{r}\,dx \biggr)^{1/r} \\ \leq &\frac{1}{\omega (B_{\gamma }(a)) \vert B_{\gamma }(a) \vert _{H}^{1/r}} \biggl( \int _{B_{\gamma }(a)} \bigl\vert b_{1}(x)-(b_{1})_{B_{\gamma }(a)} \bigr\vert ^{q _{1}}\,dx \biggr)^{1/q_{1}} \\ &{}\times \biggl( \int _{B_{\gamma }(a)} \bigl\vert T_{k}\bigl( \bigl(b_{2}-(b _{2})_{B_{\gamma }(a)}\bigr)f^{0} \bigr) (x) \bigr\vert ^{\bar{q}}\,dx \biggr)^{1/{\bar{q}}} \\ \lesssim & \frac{1}{\omega (B_{\gamma }(a)) \vert B_{\gamma }(a) \vert _{H}^{1/r}} \biggl( \int _{B_{\gamma }(a)} \bigl\vert b_{1}(x)-(b_{1})_{B_{\gamma }(a)} \bigr\vert ^{q_{1}}\,dx \biggr)^{1/q_{1}} \\ &{}\times \biggl( \int _{B_{\gamma }(a)} \bigl\vert \bigl(b_{2}(x)-(b_{2})_{B _{\gamma }(a)} \bigr)f(x) \bigr\vert ^{\bar{q}}\,dx \biggr)^{1/{\bar{q}}} \\ \leq &\frac{1}{\omega (B_{\gamma }(a)) \vert B_{\gamma }(a) \vert _{H}^{1/r}}\prod_{i=1}^{2} \biggl( \int _{B_{\gamma }(a)} \bigl\vert b_{i}(x)-(b_{i})_{B_{\gamma }(a)} \bigr\vert ^{q_{i}}\,dx \biggr)^{1/q_{i}} \biggl( \int _{B_{\gamma }(a)} \bigl\vert f(x) \bigr\vert ^{q}\,dx \biggr)^{1/ {q}} \\ \leq &\frac{\nu (B_{\gamma }(a))\nu _{1}(B_{\gamma }(a))\nu _{2}(B_{ \gamma }(a))}{\omega (B_{\gamma }(a))} \prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }} \\ \lesssim &\prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }}. \end{aligned}$$

Similarly,

$$ E_{3} \lesssim \prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }}. $$

For \(E_{4}\), from Lemma 2.2, Hölder’s inequality, and (i) we obtain

$$\begin{aligned} E_{4} =& \frac{1}{\omega (B_{\gamma }(a))} \biggl(\frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert T_{k}\bigl(b_{1}-(b_{1})_{B_{\gamma }(a)} \bigr) \bigl(b _{2}-(b_{2})_{B_{\gamma }(a)} \bigr)f^{0}) (x) \bigr\vert ^{r}\,dx \biggr)^{1/r} \\ \lesssim & \frac{1}{\omega (B_{\gamma }(a)) \vert B_{\gamma }(a) \vert _{H}^{1/r}} \biggl( \int _{B_{\gamma }(a)} \bigl\vert \bigl(b_{1}(x)-(b_{1})_{B_{\gamma }(a)} \bigr) \bigl(b_{2}(x)-(b _{2})_{B_{\gamma }(a)}\bigr)f(x) \bigr\vert ^{r}\,dx \biggr)^{1/{r}} \\ \leq &\frac{1}{\omega (B_{\gamma }(a)) \vert B_{\gamma }(a) \vert _{H}^{1/r}} \prod_{i=1}^{2} \biggl( \int _{B_{\gamma }(a)} \bigl\vert b_{i}(x)-(b_{i})_{B _{\gamma }(a)} \bigr\vert ^{q_{i}}\,dx \biggr)^{1/q_{i}} \biggl( \int _{B_{\gamma }(a)} \bigl\vert f(x) \bigr\vert ^{q}\,dx \biggr)^{1/{q}} \\ \leq &\frac{\nu (B_{\gamma }(a))\nu _{1}(B_{\gamma }(a))\nu _{2}(B_{ \gamma }(a))}{\omega (B_{\gamma }(a))}\prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }} \\ \lesssim &\prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }}. \end{aligned}$$

To estimate \(E_{5}\), we first need to consider \(|T_{k}(f^{\infty })(x)|\). In fact, by (4.3) it is easy to see that

$$ \bigl\vert T_{k}\bigl(f^{\infty }\bigr) (x) \bigr\vert \lesssim \Vert f \Vert _{GM_{q,\nu }}\sum_{j=\gamma +1}^{\infty } \nu \bigl(B_{j}(a)\bigr). $$
(4.6)

Therefore from Hölder’s inequality, (4.6), and (ii) we get

$$\begin{aligned} E_{5} =&\frac{1}{\omega (B_{\gamma }(a))} \\ &{}\times \biggl(\frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert \bigl(b_{1}(x)-(b_{1})_{B_{\gamma }(a)} \bigr) \bigl(b _{2}(x)-(b_{2})_{B_{\gamma }(a)} \bigr)T_{k}\bigl(f^{\infty }\bigr) (x) \bigr\vert ^{r} \,dx \biggr)^{1/r} \\ \leq &\frac{1}{\omega (B_{\gamma }(a)) \vert B_{\gamma }(a) \vert _{H}^{1/r}} \prod_{i=1}^{2} \biggl( \int _{B_{\gamma }(a)} \bigl\vert b_{i}(x)-(b_{i})_{B _{\gamma }(a)} \bigr\vert ^{q_{i}}\,dx \biggr)^{1/q_{i}} \\ &{}\times \biggl( \int _{B_{\gamma }(a)} \bigl\vert T _{k}\bigl(f^{\infty } \bigr) (x)f(x) \bigr\vert ^{q}\,dx \biggr)^{1/{q}} \\ \lesssim &\sum_{j=\gamma +1}^{\infty }\frac{\nu (B_{j}(a))\nu _{1}(B _{\gamma }(a))\nu _{2}(B_{\gamma }(a))}{\omega (B_{\gamma }(a))} \prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q, \nu }} \\ \lesssim &\prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }}. \end{aligned}$$

It is similar to estimate (4.3) for \(x\in B_{\gamma }(a)\). By \(\varOmega \in L^{\infty }(\mathbb{Q}_{p}^{n})\) and (2.2) we can deduce that

$$\begin{aligned}& \big|T_{k}\bigl(b_{2}-(b_{2})_{B_{\gamma }(a)} \bigr)f^{\infty }) (x)\big| \\& \quad = \biggl\vert \int _{ \vert y \vert _{p}>p^{k}}\bigl(b_{2}(x-y)-(b_{2})_{B_{\gamma }(a)} \bigr)f \chi _{B^{c}_{\gamma }(a)}(x-y)\frac{\varOmega (y)}{ \vert y \vert _{p}^{n}}\,dy \biggr\vert \\& \quad \leq \int _{B^{c}_{\gamma }} \bigl\vert b_{2}(z)-(b_{2})_{B_{\gamma }(a)} \bigr\vert \bigl\vert f(z) \bigr\vert \frac{ \vert \varOmega (x-z) \vert }{ \vert x-z \vert _{p}^{n}}\,dz \\& \quad \lesssim \int _{B^{c}_{\gamma }}\frac{ \vert b_{2}(z)-(b_{2})_{B_{\gamma }(a)} \vert \vert f(z) \vert }{ \vert x-z \vert _{p} ^{n}}\,dz \\& \quad \lesssim \sum_{j=\gamma +1}^{\infty } \int _{S_{j}(a)}p^{-jn} \bigl\vert b_{2}(z)-(b _{2})_{B_{\gamma }(a)} \bigr\vert \bigl\vert f(y) \bigr\vert \,dy \\& \quad =\sum_{j=\gamma +1}^{\infty }p^{-jn} \bigl\vert B_{j}(a) \bigr\vert _{H}^{1-1/q-1/q_{2}} \biggl( \int _{S_{j}(a)} \bigl\vert f(y) \bigr\vert ^{q}\,dy \biggr)^{1/{q}} \biggl( \int _{S_{j}(a)} \bigl\vert b _{2}(y)-(b_{2})_{B_{\gamma }(a)} \bigr\vert ^{q_{2}}\,dy \biggr)^{1/q_{2}} \\& \quad \leq \Vert f \Vert _{GM_{q,\nu }}\sum_{j=\gamma +1}^{\infty }p^{-jn} \bigl\vert B_{j}(a) \bigr\vert _{H} ^{1-1/q_{2}}\nu \bigl(B_{j}(a)\bigr) \biggl( \int _{B_{j}(a)} \bigl\vert b_{2}(y)-(b_{2})_{B _{\gamma }(a)} \bigr\vert ^{q_{2}}\,dy \biggr)^{1/q_{2}} \\& \quad \lesssim \Vert b_{2} \Vert _{GC_{q_{2},\nu _{2}}} \Vert f \Vert _{GM_{q,\nu }} \sum_{j=\gamma +1}^{\infty }(j+1- \gamma )\nu \bigl(B_{j}(a)\bigr)\nu _{2}\bigl(B_{j}(a) \bigr). \end{aligned}$$
(4.7)

Let \(1/\bar{q}=1/q+1/q_{2}\). Then \(1/r=1/q_{1}+1/\bar{q}\). Thus from Hölder’s inequality, (4.7), and (ii) it follows that

$$\begin{aligned} E_{6} =&\frac{1}{\omega (B_{\gamma }(a))} \biggl(\frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert \bigl(b_{1}(x)-(b_{1})_{B_{\gamma }(a)} \bigr)T _{k}\bigl(\bigl(b_{2}-(b_{2})_{B_{\gamma }(a)} \bigr)f^{\infty }\bigr) (x) \bigr\vert ^{r}\,dx \biggr)^{1/r} \\ \leq &\frac{1}{\omega (B_{\gamma }(a)) \vert B_{\gamma }(a) \vert _{H}^{1/r}} \biggl( \int _{B_{\gamma }(a)} \bigl\vert b_{1}(x)-(b_{1})_{B_{\gamma }(a)} \bigr\vert ^{q _{1}}\,dx \biggr)^{1/q_{1}} \\ &{}\times \biggl( \int _{B_{\gamma }(a)} \bigl\vert T_{k}\bigl( \bigl(b_{2}-(b _{2})_{B_{\gamma }(a)}\bigr)f^{\infty } \bigr) (x) \bigr\vert ^{\bar{q}}\,dx \biggr)^{1/{\bar{q}}} \\ \leq &\prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM _{q,\nu }} \frac{1}{\omega (B_{\gamma }(a))}\sum_{j=\gamma +1}^{ \infty }(j+1-\gamma )\nu \bigl(B_{j}(a)\bigr)\nu _{2}\bigl(B_{j}(a) \bigr)\nu _{1}\bigl(B_{\gamma }(a)\bigr) \\ \lesssim &\prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }}. \end{aligned}$$

Similarly estimating \(E_{6}\), we obtain

$$ E_{7}\lesssim \prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }}. $$

Moreover, since \(\varOmega \in L^{\infty }(\mathbb{Q}_{p}^{n})\), by (2.2) it is easy to see that

$$\begin{aligned}& \bigl\vert T_{k}\bigl(\bigl(b_{1}-(b_{1})_{B_{\gamma }(a)} \bigr) \bigl(b_{2}-(b_{2})_{B_{\gamma }(a)}\bigr)f ^{\infty }\bigr) (x) \bigr\vert \\& \quad = \biggl\vert \int _{ \vert x-z \vert _{p}>p^{k}}\bigl(b_{1}(z)-(b_{1})_{B_{\gamma }(a)} \bigr) \bigl(b _{2}(z)-(b_{2})_{B_{\gamma }(a)}\bigr)f\chi _{B^{c}_{\gamma }(a)}(z)\frac{ \varOmega (x-z)}{ \vert x-z \vert _{p}^{n}}\,dz \biggr\vert \\& \quad \leq \int _{B^{c}_{\gamma }} \bigl\vert b_{1}(z)-(b_{1})_{B_{\gamma }(a)} \bigr\vert \bigl\vert b_{2}(z)-(b _{2})_{B_{\gamma }(a)} \bigr\vert \bigl\vert f(z) \bigr\vert \frac{ \vert \varOmega (x-z) \vert }{ \vert x-z \vert _{p}^{n}}\,dz \\& \quad \lesssim \sum_{j=\gamma +1}^{\infty } \int _{S_{j}(a)}p^{-jn} \bigl\vert b_{1}(z)-(b _{1})_{B_{\gamma }(a)} \bigr\vert \bigl\vert b_{2}(z)-(b_{2})_{B_{\gamma }(a)} \bigr\vert \bigl\vert f(y) \bigr\vert \,dy \\& \quad =\sum_{j=\gamma +1}^{\infty }p^{-jn} \bigl\vert B_{j}(a) \bigr\vert _{H}^{1-1/q-1/q_{1}-1/q _{2}} \biggl( \int _{S_{j}(a)} \bigl\vert f(y) \bigr\vert ^{q}\,dy \biggr)^{1/{q}} \\& \qquad {}\times \biggl( \int _{S_{j}(a)} \bigl\vert b_{1}(y)-(b_{1})_{B_{\gamma }(a)} \bigr\vert ^{q_{1}}\,dy \biggr)^{1/q _{1}} \\& \qquad {} \times \biggl( \int _{S_{j}(a)} \bigl\vert b_{2}(y)-(b_{2})_{B_{\gamma }(a)} \bigr\vert ^{q _{2}}\,dy \biggr)^{1/q_{2}} \\& \quad \lesssim \prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }}\sum _{j=\gamma +1}^{\infty }(j+1-\gamma )^{2}\nu \bigl(B_{j}(a)\bigr) \nu _{1}\bigl(B_{j}(a)\bigr) \nu _{2}\bigl(B_{j}(a)\bigr). \end{aligned}$$
(4.8)

Therefore from (4.8) and (ii) we get that

$$\begin{aligned} E_{8} =&\frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{B_{\gamma }(a)|_{H}} \int _{B} \bigl\vert T_{k}\bigl( \bigl(b_{1}-(b_{1})_{B_{ \gamma }(a)}\bigr) \bigl(b_{2}-(b_{2})_{B_{\gamma }(a)}\bigr)f^{\infty } \bigr) (x) \bigr\vert ^{r}\,dx \biggr)^{1/r} \\ \leq& \prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM _{q,\nu }} \frac{1}{\omega (B_{\gamma }(a))}\sum_{j=\gamma +1}^{ \infty }(j+1-\gamma )^{2} \nu \bigl(B_{j}(a)\bigr)\nu _{1} \bigl(B_{j}(a)\bigr)\nu _{2}\bigl(B _{j}(a)\bigr) \\ \lesssim& \prod_{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }}. \end{aligned}$$

Combining (4.5) and the estimates of \(E_{1},E_{2},\dots , E_{8}\), we have

$$ \frac{1}{\omega (B_{\gamma }(a))} \biggl( \frac{1}{ \vert B_{\gamma }(a) \vert _{H}} \int _{B_{\gamma }(a)} \bigl\vert T_{k}^{(b_{1},b _{2})}(f) (x) \bigr\vert ^{r}\,dx \biggr)^{1/r} \leq \prod _{i=1}^{2} \Vert b_{i} \Vert _{GC_{q_{i},\nu _{i}}} \Vert f \Vert _{GM_{q,\nu }}, $$

which means that the commutator \(T_{k}^{(b_{1},b_{2})}\) is bounded from \(GM_{q,\nu }\) to \(GM_{r,\omega }\).

Moreover, by Lemma 2.2 and the definition of \(GM_{q,\omega }( \mathbb{Q}_{p}^{n} )\) it is obvious that the commutator \(T^{\vec{b}}(f)= \lim_{k\rightarrow -\infty }T_{k}^{\vec{b}}(f)\) exists in the space of \(GM_{q,\omega }\), and \(T^{\vec{b}}\) is bounded from \(GM_{q,\nu }\) to \(GM_{q,\omega }\).

Therefore the proof of Theorem 3.3 is complete. □

5 Conclusion

In this paper, we established the boundedness of a class of p-adic singular integral operators on the p-adic generalized Morrey spaces. We also considered the corresponding boundedness for the commutators generalized by the p-adic singular integral operators and p-adic Lipschitz functions or p-adic generalized Campanato functions.