1 Introduction and main results

Let f be a Schwartz function in \(\mathcal{S}(\mathbb{R}^{n})\) and

$$S_{t}f(x)=u(x,t)=(2\pi)^{-n} \int_{\mathbb{R}^{n}} e^{ix\cdot\xi+it|\xi|^{a}}\hat{f}(\xi)\,d\xi,\quad (x,t)\in \mathbb{R}^{n}\times\mathbb{R}. $$

It is well known that \(S_{t}f(x)\) is the solution of the fractional Schrödinger equation

$$\begin{aligned} \textstyle\begin{cases} i\partial_{t}u+(-\Delta)^{a/2} u=0,\quad (x,t)\in\mathbb {R}^{n}\times\mathbb{R},\\ u(x,0)=f(x). \end{cases}\displaystyle \end{aligned}$$
(1.1)

Here denotes the Fourier transform of f defined by \(\hat{f}(\xi)=\int_{\mathbb{R}^{n}}e^{-i\xi\cdot x}f(x)\,dx\).

We recall the homogeneous Sobolev space \(\dot{H}^{s}(\mathbb{R}^{n})\ (s\in\mathbb{R})\), which is defined by

$$\dot{H}^{s}\bigl(\mathbb{R}^{n}\bigr)= \biggl\{ f\in \mathcal{S}^{\prime}: \Vert f \Vert _{H^{s}}= \biggl( \int_{\mathbb{R}^{n}} \vert \xi \vert ^{2s} \bigl\vert \hat{f}(\xi) \bigr\vert ^{2}\,d\xi \biggr)^{1/2} < \infty \biggr\} , $$

and the non-homogeneous Sobolev space \(H^{s}(\mathbb{R}^{n})\ (s\in \mathbb{R})\), which is defined by

$$H^{s}\bigl(\mathbb{R}^{n}\bigr)= \biggl\{ f\in \mathcal{S}^{\prime}: \Vert f \Vert _{H^{s}}= \biggl( \int_{\mathbb{R}^{n}} \bigl(1+ \vert \xi \vert ^{2} \bigr)^{s} \bigl\vert \hat{f}(\xi) \bigr\vert ^{2}\,d\xi \biggr)^{1/2}< \infty \biggr\} . $$

Maximal operator \(S^{\ast}f\) associated with the family of operators \(\{S_{t}\}_{0< t<1}\) is defined by

$$S^{\ast}f(x)= \sup_{0< t< 1} \bigl\vert S_{t}f(x) \bigr\vert ,\quad x\in\mathbb{R}^{n}. $$

It is well known that if \(a=2\), u is the solution of the Schrödinger equation

$$\begin{aligned} \textstyle\begin{cases} i\partial_{t}u-\Delta u=0,\quad (x,t)\in\mathbb{R}^{n}\times\mathbb {R},\\ u(x,0)=f(x). \end{cases}\displaystyle \end{aligned}$$
(1.2)

In 1979, Carleson [4] proposed a problem: if \(f\in H^{s}(\mathbb{R}^{n})\) for which s does

$$\begin{aligned} \lim_{t\rightarrow0}u(x,t)=f(x),\quad \mbox{a.e. }x\in \mathbb{R}^{n}. \end{aligned}$$
(1.3)

Carleson first considered this problem for dimension \(n=1\) in [4] and showed that the convergence (1.3) holds for \(f\in H^{s}(\mathbb{R})\) with \(s \geq\frac{1}{4}\), which is sharp was shown by Dahlberg and Kenig [8]. The higher dimensional case of convergence (1.3) has been studied by several authors, see [1, 2, 9, 11,12,13, 24, 25, 30, 34, 35] for example. In fact, by a standard argument, for \(f\in H^{s}(\mathbb {R}^{n})\), the pointwise convergence (1.3) follows from the local estimate

$$ \bigl\Vert S^{\ast}f \bigr\Vert _{L^{q}(\mathbb {B}^{n})}\leq C \Vert f \Vert _{H^{s}(\mathbb{R}^{n})},\quad f\in H^{s}\bigl( \mathbb{R}^{n}\bigr), $$
(1.4)

for some \(q\geq1\) and \(s\in\mathbb{R}\). Here \(\mathbb{B}^{n}\) is the unit ball centered at the origin in \(\mathbb{R}^{n}\). On the other hand, the global estimates are of independent interest since they reveal global regularity properties of the corresponding oscillatory integrals. Next, we recall the global estimate

$$ \bigl\Vert S^{\ast}f \bigr\Vert _{L^{q}(\mathbb{R}^{n})} \leq C \Vert f \Vert _{H^{s}(\mathbb{R}^{n})}. $$
(1.5)

Estimate (1.5) and related questions have been well studied in literature, see, e.g., Carbery [3], Cowling [7], Kenig and Ruiz [21], Kenig, Ponce, and Vega [20], Rogers and Villarroya [29], Rogers [28], Sjölin [30,31,32], and so on.

For \(n\geq2\) and a multiindex \(a=(a_{1},a_{2},\ldots, a_{n})\), with \(a_{j}>1\) and f being a Schwartz function in \(\mathcal {S}(\mathbb{R}^{n})\), we set

$$S_{t}f(x)=(2\pi)^{-n} \int_{\mathbb{R}^{n}} e^{ix\cdot\xi}e^{i(t_{1} |\xi_{1}|^{a_{1}}+t_{2}|\xi_{2}|^{a_{2}}+ \cdots+t_{n}|\xi_{n}|^{a_{n}})}\hat{f}(\xi)\,d\xi,\quad x\in\mathbb{R}^{n}, $$

where \(t=(t_{1},t_{2},\ldots, t_{n})\in\mathbb{R}^{n}\). For \(n\geq2\), the local maximal operator \(M^{\ast}\) is defined by

$$M^{\ast}f(x)= \sup_{0< t_{i}< 1} \bigl\vert S_{t}f(x) \bigr\vert ,\quad x\in\mathbb{R}^{n}, $$

and the global maximal operator \(M^{\ast\ast}\) is defined by

$$M^{\ast\ast}f(x) = \sup_{t_{i}\in\mathbb{R}} \bigl\vert S_{t}f(x) \bigr\vert ,\quad x\in\mathbb{R}^{n}. $$

The global estimate

$$ \bigl\Vert M^{\ast\ast}f \bigr\Vert _{L^{q}(\mathbb{R}^{n})} \leq C \Vert f \Vert _{\dot{H}^{s}(\mathbb{R}^{n})} $$
(1.6)

and

$$ \bigl\Vert M^{\ast}f \bigr\Vert _{L^{q}(\mathbb{R}^{n})} \leq C \Vert f \Vert _{H^{s}(\mathbb{R}^{n})}. $$
(1.7)

In 2014, Sjolin and Soria [32] obtained the following results.

Theorem A

([32])

Assume \(n\geq2\). Then, for every a, inequality (1.6) holds if and only if \(4\leq q<\infty\) and \(s=n(\frac{1}{2}-\frac{1}{q})\).

Theorem B

([32])

Assume \(n\geq2\). Then, for every a and for \(2< q<4\), inequality (1.7) holds if and only if \(s\geq\frac {n}{2}-\frac{|a|}{4}+\frac{|a|}{q}-\frac{n}{q}\).

Multiparameter singular integrals and related operators have been well studied and raised considerable attention in harmonic analysis, which can been seen in the work of Stein and Fefferman in [14,15,16,17], and so on. In the present paper, we consider the maximal estimates associated with multiparameter oscillatory integral \(S_{t,\varPhi}\) defined by

$$S_{t,\varPhi}f(x)=(2\pi)^{-n} \int_{\mathbb{R}^{n}} e^{ix\cdot\xi}e^{i(t_{1} \phi_{1}(|\xi_{1}|)+t_{2}\phi_{2}(|\xi_{2}|)+ \cdots+t_{n}\phi_{n}(|\xi_{n}|))}\hat{f}(\xi)\,d\xi,\quad x\in\mathbb{R}^{n}. $$

Here, \(n\geq2\) and f is a Schwartz function in \(\mathcal{S}(\mathbb {R}^{n})\), \(\varPhi=(\phi_{1},\phi_{2},\ldots,\phi_{n})\), \(\phi_{i}\) \((i=1,2,3,\ldots, n)\) is a function on \(\mathbb {R}^{+}\rightarrow\mathbb{R}\). For \(n\geq2\), the local maximal operator \(M_{\varPhi}^{\ast}\) is defined by

$$M_{\varPhi}^{\ast}f(x)= \sup_{0< t_{i}< 1} \bigl\vert S_{t,\varPhi}f(x) \bigr\vert ,\quad x\in\mathbb{R}^{n}, $$

and the global maximal operator \(M_{\varPhi}^{\ast\ast}\) is defined by

$$M_{\varPhi}^{\ast\ast}f(x)= \sup_{t_{i}\in\mathbb{R}} \bigl\vert S_{t,\varPhi}f(x) \bigr\vert ,\quad x\in\mathbb{R}^{n}. $$

The global estimates of maximal operators \(M_{\varPhi}^{\ast}\) and \(M_{\varPhi}^{\ast\ast}\) are defined by

$$ \bigl\Vert M_{\varPhi}^{\ast\ast}f \bigr\Vert _{L^{q}(\mathbb{R}^{n})} \leq C \Vert f \Vert _{\dot{H}^{s}(\mathbb{R}^{n})} $$
(1.8)

and

$$ \bigl\Vert M_{\varPhi}^{\ast}f \bigr\Vert _{L^{q}(\mathbb{R}^{n})} \leq C \Vert f \Vert _{H^{s}(\mathbb{R}^{n})}. $$
(1.9)

Assume that \(\phi: \mathbb{R}^{+}\rightarrow\mathbb{R}\) satisfies:

  1. (H1)

    There exists \(m_{1}>1\) such that \(|\phi^{\prime}(r)|\sim r^{m_{1}-1}\) and \(|\phi^{\prime \prime}(r)|\gtrsim r^{m_{1}-2}\) for all \(0< r<1\);

  2. (H2)

    There exists \(m_{2}>1\) such that \(|\phi^{\prime}(r)|\sim r^{m_{2}-1}\) and \(|\phi^{\prime \prime}(r)|\gtrsim r^{m_{2}-2}\) for all \(r\geq1\);

  3. (H3)

    Either \(\phi^{\prime\prime}(r)>0\) or \(\phi^{\prime \prime}(r)<0\) for all \(r>0\).

Now we state our main results as follows.

Theorem 1.1

Assume that \(n\geq2\) and \(\phi_{i}\) \((i=1,2,3,\ldots, n)\) satisfies (H1)(H3). If \(4\leq q<\infty\) and \(s=n(\frac{1}{2}-\frac{1}{q})\), then the global estimate (1.8) holds.

Theorem 1.2

Let \(m=(m_{1,2},m_{2,2},\ldots,m_{n,2})\) and set \(|m|=m_{1,2}+m_{2,2}+\cdots+m_{n,2}\). Assume that \(n\geq2\) and \(\phi _{i}\) \((i=1,2,3,\ldots, n)\) satisfies (H1)(H3) with \(m_{i,1}>1\), \(m_{i,2}>1\). Then, for every m, inequality (1.9) holds if \(2< q<4\) and \(s\geq\frac{n}{2}-\frac{|m|}{4}+\frac{|m|}{q}-\frac{n}{q}\).

Remark 1.1

There are many elements ϕ satisfying conditions (H1)–(H3), for instance, the fractional Schrödinger equation (\(\phi(r)= r^{a}\)), or \(( \phi(r)=(1+r^{2})^{\frac{a}{2}}), (a\geq1)\), the Beam equation \((\phi(r)=\sqrt{1+r^{4}})\), the fourth-order Schrödinger equation \((\phi(r)=r^{2}+r^{4})\), iBq \((\phi(r)=r\sqrt{1+r^{2}})\), and so on (see [5, 6, 18, 19, 22, 23, 27], and the references therein). Hence, Theorem 1.1 and Theorem 1.2 imply the sufficiency part of Theorem A and Theorem B, respectively. However, due to the complexity of the symbol ϕ, we cannot obtain the necessities of the range of q in Theorem 1.1 and Theorem 1.2.

This paper is organized as follows. The proofs of Theorem 1.1 and Theorem 1.2 are given in Sect. 2 and Sect. 3, respectively. To prove Theorem 1.1 and Theorem 1.2, we next need the following important lemmas, which play a key role in proving Theorem 1.1 and Theorem 1.2, respectively. The proof of Lemma 1.4 is given in Sect. 4.

Lemma 1.3

([26])

Assume that ϕ satisfies (H1)(H3) with \(m_{1}>1\), \(m_{2}>1\). \(\frac{1}{2}\leq s<1\) and \(\mu\in C_{0}^{\infty}(\mathbb {R})\). Then

$$\biggl\vert \int_{\mathbb{R}} e^{ix\xi+it\phi( \vert \xi \vert )} \vert \xi \vert ^{-s} \mu \biggl(\frac{\xi}{N} \biggr) \,d\xi \biggr\vert \leq C \frac{1}{ \vert x \vert ^{1-s}} $$

for \(x\in\mathbb{R}\setminus\{0\}\), \(t\in\mathbb{R}\), and \(N=1,2,3,\ldots\) . Here the constant C may depend on s and \(m_{1}\), \(m_{2}\), and μ but not on x, t, or N.

Remark 1.2

The proof of Lemma 1.3 is similar to that of Lemma 2.1 in [10].

Lemma 1.4

Assume that ϕ satisfies (H1)(H3) with \(m_{1}>1\), \(m_{2}>1\). \(\frac{1}{2}\leq\alpha\leq\frac{m_{2}}{2}\), \(-1< d<1\), and \(\mu\in C_{0}^{\infty}(\mathbb{R})\). Then

$$ \biggl\vert \int_{\mathbb{R}} \frac{e^{i(d\phi( \vert \xi \vert )-x\xi)}}{(1+\xi ^{2})^{\frac{\alpha}{2}}} \mu\biggl(\frac{\xi}{N} \biggr)\,d\xi \biggr\vert \leq C\frac{1}{ \vert x \vert ^{\beta}} $$
(1.10)

for \(x\in\mathbb{R}\setminus\{0\}\) and \(N=1,2,3,\ldots\) , where \(\beta=\frac{\alpha+\frac{m_{2}}{2}-1}{m_{2}-1}\). Here the constant C may depend on α and \(m_{1}\), \(m_{2}\), and μ but not on x, d, and N.

Remark 1.3

Applying the result of Lemma 1.3, the proof of Lemma 1.4 is similar to that of Lemma 2.2 in [32]. The proof of Lemma 1.4 will be given in Sect. 4.

2 The proof of Theorem 1.1

Assume that \(n\geq2\), \(\phi_{i}\) \((i=1,2,3,\ldots ,n)\) satisfies (H1)–(H3). For \(i=1,2,3,\ldots ,n\), let \(t_{i}(x)\) be a measurable function on \(\mathbb{R}^{n}\) with \(t_{i}(x)\in\mathbb{R}\). Denote \(t(x)=(t_{1}(x),t_{2}(x),\ldots,t_{n}(x))\), we set

$$\begin{aligned} S_{t(x),\varPhi}f(x)={}&(2\pi)^{-n} \int_{\mathbb{R}^{n}} e^{ix\cdot\xi}e^{i(t_{1}(x) \phi_{1}(|\xi_{1}|)+t_{2}(x)\phi_{2}(|\xi_{2}|)+ \cdots+t_{n}(x)\phi_{n}(|\xi_{n}|))}\hat{f}(\xi)\,d\xi,\\ & x\in\mathbb{R}^{n}, f\in\mathcal{S}\bigl(\mathbb{R}^{n}\bigr). \end{aligned}$$

For \(4\leq q<\infty\) and \(s=n(\frac{1}{2}-\frac{1}{q})\), that is, \(\frac{n}{4}\leq s<\frac{n}{2}\) and \(q=\frac{2n}{n-2s}\). By linearizing the maximal operator (see [30]) to prove the global estimate (1.8) holds, it suffices to show that

$$ \Vert S_{t(x),\varPhi}f \Vert _{L^{q}(\mathbb{R}^{n})}\leq C \Vert f \Vert _{\dot {H}^{s}}=C \biggl( \int_{\mathbb{R}^{n}} \vert \xi \vert ^{2s} \bigl\vert \hat{f}(\xi) \bigr\vert ^{2}\,d\xi \biggr)^{1/2}. $$
(2.1)

To prove (2.1) it suffices to prove that

$$ \Vert S_{t(x),\varPhi}f \Vert _{L^{q}(\mathbb{R}^{n})}\leq C \biggl( \int_{\mathbb{R}^{n}} \vert \xi_{1} \vert ^{\frac{2s}{n}} \vert \xi_{2} \vert ^{\frac{2s}{n}} |\cdots \vert \xi_{n} \vert ^{\frac{2s}{n}} \bigl\vert \hat{f}(\xi) \bigr\vert ^{2} \,d\xi \biggr)^{1/2}. $$
(2.2)

Let \(g(\xi)=|\xi_{1}|^{\frac{s}{n}}|\xi_{2}|^{\frac{s}{n}} \cdots|\xi_{n}|^{\frac{s}{n}}\hat{f}(\xi)\), then we have

$$\begin{aligned} S_{t(x),\varPhi}f(x)={}& \int_{\mathbb{R}^{n}} e^{ix\cdot\xi}e^{i(t_{1}(x) \phi_{1}( \vert \xi_{1} \vert )+t_{2}(x)\phi_{2}( \vert \xi_{2} \vert )+ \cdots+t_{n}(x)\phi_{n}( \vert \xi_{n} \vert ))} \vert \xi_{1} \vert ^{-\frac{s}{n}} \vert \xi_{2} \vert ^{-\frac{s}{n}} \cdots \vert \xi_{n} \vert ^{-\frac{s}{n}}g(\xi)\,d \xi \\ ={}&R_{\varPhi}g(x), \end{aligned}$$
(2.3)

where

$$R_{\varPhi}g(x)= \int_{\mathbb{R}^{n}} e^{ix\cdot\xi}e^{i(t_{1}(x) \phi_{1}( \vert \xi_{1} \vert )+t_{2}(x)\phi_{2}( \vert \xi_{2} \vert )+ \cdots+t_{n}(x)\phi_{n}( \vert \xi_{n} \vert ))} \vert \xi_{1} \vert ^{-\frac{s}{n}} \vert \xi_{2} \vert ^{-\frac{s}{n}} \cdots \vert \xi_{n} \vert ^{-\frac{s}{n}}g(\xi)\,d \xi. $$

To prove (2.2) it suffices to prove that

$$ \Vert R_{\varPhi}g \Vert _{L^{q}(\mathbb{R}^{n})}\leq C \Vert g \Vert _{L^{2}(\mathbb{R}^{n})} $$
(2.4)

for g continuous and rapidly decreasing at infinity. We take a real-valued function \(\rho\in C_{0}^{\infty}(\mathbb{R}^{n})\) such that \(\rho(x)=1\) if \(|x|\leq1\) and \(\rho(x)=0\) if \(|x|\geq2\). And we choose a real-valued function \(\psi\in C_{0}^{\infty}(\mathbb{R})\) such that \(\psi(x)=1\) if \(|x|\leq1\) and \(\psi(x)=0\) if \(|x|\geq2\), and set \(\sigma(\xi )=\psi(\xi_{1})\psi(\xi_{2}) \cdots\psi(\xi_{n})\). For \(\xi\in\mathbb{R}^{n}\) and \(N=1,2,3,\ldots\) , we set \(\rho_{N}(x)=\rho(\frac{x}{N})\) and \(\sigma_{N}(\xi)=\sigma(\frac{\xi}{N})\). For \(x\in\mathbb{R}^{n}\), \(g\in L^{2}(\mathbb{R}^{n})\), and for \(N=1,2,3,\ldots\) , we define

$$\begin{aligned} R_{N,\varPhi}g(x)={}&\rho_{N}(x) \int_{\mathbb{R}^{n}} e^{ix\cdot\xi}e^{i(t_{1}(x) \phi_{1}( \vert \xi_{1} \vert )+t_{2}(x)\phi_{2}( \vert \xi_{2} \vert )+ \cdots+t_{n}(x)\phi_{n}( \vert \xi_{n} \vert ))} \vert \xi_{1} \vert ^{-\frac{s}{n}} \vert \xi_{2} \vert ^{-\frac{s}{n}} \cdots\\ &{}\times \vert \xi_{n} \vert ^{-\frac{s}{n}} \sigma_{N}(\xi)g(\xi)\,d\xi. \end{aligned}$$

The adjoint of \(R_{N,\varPhi}\) is given by

$$\begin{aligned} R^{\prime}_{N,\varPhi}h(\xi)={}&\sigma_{N}(\xi) \vert \xi_{1} \vert ^{-\frac{s}{n}} \vert \xi_{2} \vert ^{-\frac{s}{n}} \cdots\\ &{}\times \vert \xi_{n} \vert ^{-\frac{s}{n}} \int_{\mathbb{R}^{2}} e^{-ix\cdot\xi}e^{-i(t_{1}(x) \phi_{1}( \vert \xi_{1} \vert )+t_{2}(x)\phi_{2}( \vert \xi_{2} \vert )+ \cdots+t_{n}(x)\phi_{n}( \vert \xi_{n} \vert ))} \rho_{N}(x)h(x)\,dx, \end{aligned}$$

where \(\xi\in\mathbb{R}^{n}\) and \(h\in L^{2}(\mathbb{R}^{n})\). To prove (2.4) it is sufficient to prove that

$$ \Vert R_{N,\varPhi}g \Vert _{L^{q}(\mathbb{R}^{n})}\leq C \Vert g \Vert _{L^{2}(\mathbb{R}^{n})}. $$
(2.5)

By duality, to prove (2.5) it suffices to show that

$$ \bigl\Vert R_{N,\varPhi}^{\prime}h \bigr\Vert _{L^{2}(\mathbb{R}^{n})}\leq C \Vert h \Vert _{L^{q^{\prime}}(\mathbb{R}^{n})}, $$
(2.6)

where \(\frac{1}{q}+\frac{1}{q^{\prime}}=1\). Thus, we have

$$ \bigl\Vert R_{N,\varPhi}^{\prime}h \bigr\Vert _{L^{2}(\mathbb{R}^{n})}^{2} = \int \bigl\vert R^{\prime}_{N,\varPhi}h(\xi) \bigr\vert ^{2}\,d\xi = \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} K_{N}(x,y)\rho_{N}(x) \rho_{N}(y)h(x)\overline{h(y)}\,dx\,dy, $$
(2.7)

where

$$ K_{N}(x,y)=K^{1}_{N}(x,y) K^{2}_{N}(x,y)\cdots K^{n}_{N}(x,y) $$
(2.8)

and

$$ K^{i}_{N}(x,y)= \int_{\mathbb{R}} \vert \xi_{i} \vert ^{-\frac{2s}{n}} e^{i(y_{i}-x_{i})\xi_{i}} e^{i(t_{i}(y)-t_{i}(x))\phi( \vert \xi_{i} \vert )} \psi_{N}(\xi_{i})^{2} \,d\xi_{i}, $$
(2.9)

where \(i=1,2,\ldots,n\) and \(N=1,2,\ldots\) . Since \(\frac{n}{4}\leq s <\frac{n}{2}\), we have \(\frac{1}{2}\leq \frac{2s}{n}<1\). Therefore, by Lemma 1.3, (2.9), and (2.8), we obtain

$$ \bigl\vert K_{N}(x,y) \bigr\vert \leq C \frac{1}{ \vert x_{1}-y_{1} \vert ^{1-\frac{2s}{n}}} \frac{1}{ \vert x_{2}-y_{2} \vert ^{1-\frac{2s}{n}}} \cdots\frac{1}{ \vert x_{n}-y_{n} \vert ^{1-\frac{2s}{n}}}. $$
(2.10)

We define

$$P_{i}f(x_{1},x_{2},\ldots, x_{n})= \int_{\mathbb{R}} \frac{1}{ \vert x_{i}-y_{i} \vert ^{1-\frac{2s}{n}}} f(x_{1}, \ldots,x_{i-1},y_{i}, x_{i+1},\ldots,x_{n}) \,dy_{i}, $$

\(i=1,2,\ldots,n\). Thus, by (2.7) and (2.10), we obtain

$$\begin{aligned} &\int \bigl\vert R_{N,\varPhi}^{\prime}h(\xi) \bigr\vert ^{2}\,d\xi \\ &\quad \leq C \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{1}{ \vert x_{1}-y_{1} \vert ^{1-\frac{2s}{n}}} \frac{1}{ \vert x_{2}-y_{2} \vert ^{1-\frac{2s}{n}}} \cdots \frac{1}{ \vert x_{n}-y_{n} \vert ^{1-\frac{2s}{n}}} \bigl\vert h(x) \bigr\vert \bigl\vert h(y) \bigr\vert \,dx\,dy \\ &\quad = C \int_{\mathbb{R}^{n}} \biggl( \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}}\frac{1}{ \vert x_{n}-y_{n} \vert ^{1-\frac{2s}{n}}} \frac{1}{ \vert x_{n-1}-y_{n-1} \vert ^{1-\frac{2s}{n}}}\cdots \frac {1}{ \vert x_{3}-y_{3} \vert ^{1-\frac{2s}{n}}} \\ &\qquad{}\times\frac {1}{ \vert x_{2}-y_{2} \vert ^{1-\frac{2s}{n}}} \biggl( \int\frac {1}{ \vert x_{1}-y_{1} \vert ^{1-\frac{2s}{n}}} \bigl\vert h(y_{1},y_{2}, \ldots, y_{n}) \bigr\vert \,dy_{1} \biggr) \,dy_{2}\,dy_{3}\cdots \,dy_{n} \biggr) \bigl\vert h(x) \bigr\vert \,dx \\ &\quad =C \int_{\mathbb{R}^{n}}P_{n}P_{n-1}\cdots P_{2}P_{1} \vert h \vert (x) \bigl\vert h(x) \bigr\vert \,dx. \end{aligned}$$
(2.11)

Invoking Hölder’s inequality, we get

$$ \int \bigl\vert R_{N,\varPhi}^{\prime}h(\xi) \bigr\vert ^{2}\,d\xi\leq C \bigl\Vert P_{n}P_{n-1}\cdots P_{2}P_{1} \vert h \vert \bigr\Vert _{L^{q}(\mathbb{R}^{n})} \Vert h \Vert _{L^{q^{\prime}}(\mathbb{R}^{n})}. $$
(2.12)

Since \(q=\frac{2n}{n-2s}\), it follows that \(q^{\prime}=\frac {2n}{n+2s}\) and the fact \(\frac{1}{q}=\frac{1}{q^{\prime}}-\frac{2s}{n}\). Denote by \(I_{\sigma}\) the Riesz potential of order σ, which is defined by

$$I_{\sigma}(f) (u)= \int_{\mathbb{R}}\frac{f(v)}{ \vert u-v \vert ^{1-\sigma}}\,dv. $$

Applying the fact \(I_{s}\) is bounded from \(L^{q^{\prime}}(\mathbb{R})\) to \(L^{q}(\mathbb{R})\), we have

$$ \biggl( \int_{\mathbb{R}} \bigl\vert P_{j}h(x) \bigr\vert ^{q}\,dx_{j} \biggr) ^{1/q}\leq C \biggl( \int_{\mathbb{R}} \bigl\vert h(x) \bigr\vert ^{q^{\prime}} \,dx_{j} \biggr) ^{1/q^{\prime}}, $$
(2.13)

where \(j=1,2,\ldots,n\). By (2.13) and Minkowski’s inequality, we have

$$ \bigl\Vert P_{n}P_{n-1}\cdots P_{2}P_{1} \vert h \vert \bigr\Vert _{L^{q}(\mathbb{R}^{n})} \leq C \Vert h \Vert _{L^{q^{\prime}}(\mathbb{R}^{n})}. $$
(2.14)

Therefore, (2.6) follows from (2.12) and (2.14). Now we complete the proof of Theorem 1.1.

3 The proof of Theorem 1.2

Assume that \(n\geq2\), \(\phi_{i}\) \((i=1,2,3,\ldots, n)\) satisfies (H1)–(H3) with \(m_{i,1}>1\), \(m_{i,2}>1\). For every \(m=(m_{1,2},m_{2,2},\ldots,m_{n,2})\) and \(2< q<4\), we will prove that inequality (1.9) holds if \(s=\frac{n}{2}-\frac{|m|}{4}+\frac{|m|}{q}-\frac{n}{q}\), where \(|m|=m_{1,2}+m_{2,2}+\cdots+m_{n,2}\). For \(i=1,2,3,\ldots, n\), let \(t_{i}(x)\) be a measurable function on \(\mathbb{R}^{n}\) with \(0< t_{i}(x)<1\). Denote \(t(x)=(t_{1}(x),t_{2}(x),\ldots,t_{n}(x))\), we set

$$S_{t(x),\varPhi}f(x)= \int_{\mathbb{R}^{n}} e^{ix\cdot\xi}e^{i(t_{1}(x) \phi_{1}(|\xi_{1}|)+t_{2}(x)\phi_{2}(|\xi_{2}|)+ \cdots+t_{n}(x)\phi_{n}(|\xi_{n}|))}\hat{f}(\xi)\,d\xi,\quad x\in\mathbb{R}^{n}, f\in\mathcal{S}\bigl(\mathbb{R}^{n}\bigr). $$

By linearizing the maximal operator, to prove the global estimate (1.9) it suffices to show that

$$ \Vert S_{t(x),\varPhi}f \Vert _{L^{q}(\mathbb{R}^{n})}\leq C \Vert f \Vert _{H^{s}}=C \biggl( \int_{\mathbb{R}^{n}} \bigl(1+ \vert \xi \vert ^{2} \bigr)^{s} \bigl\vert \hat{f}(\xi) \bigr\vert ^{2}\,d\xi \biggr)^{1/2}. $$
(3.1)

Since \(s=\frac{n}{2}-\frac{|m|}{4}+\frac{|m|}{q}-\frac{n}{q} =n\frac{1}{2}-\frac{m_{1,2}+m_{2,2}+\cdots+m_{n,2}}{4} +\frac{m_{1,2}+m_{2,2}+\cdots+m_{n,2}}{q}-n\frac{1}{q} =:s_{1}+s_{2}+\cdots+s_{n}\), where \(s_{i}=\frac{1}{2}-\frac{m_{i,2}}{4}+ \frac{m_{i,2}}{q}-\frac{1}{q}\), \(i=1,2,\ldots,n\). Therefore, to prove (3.1) it suffices to prove that

$$ \Vert S_{t(x),\varPhi}f \Vert _{L^{q}(\mathbb{R}^{n})}\leq C \biggl( \int_{\mathbb{R}^{2}} \bigl(1+ \vert \xi_{1} \vert ^{2}\bigr)^{s_{1}}\bigl(1+ \vert \xi_{2} \vert ^{2}\bigr)^{s_{2}} \vert \cdots \vert \bigl(1+ \vert \xi_{n} \vert ^{2}\bigr)^{s_{n}} \bigl\vert \hat{f}(\xi) \bigr\vert ^{2} \,d\xi \biggr)^{1/2}. $$
(3.2)

Let \(g(\xi)=(1+|\xi_{1}|^{2})^{\frac{s_{1}}{2}}(1+|\xi_{2}|^{2}) ^{\frac{s_{2}}{2}} \cdots(1+|\xi_{n}|^{2})^{\frac{s_{n}}{2}}\hat{f}(\xi)\), then we have

$$ S_{t(x),\varPhi}f(x)=R_{\varPhi}g(x), $$
(3.3)

where

$$\begin{aligned} R_{\varPhi}g(x)={}& \int_{\mathbb{R}^{n}} e^{ix\cdot\xi}e^{i(t_{1}(x) \phi_{1}( \vert \xi_{1} \vert )+t_{2}(x)\phi_{2}( \vert \xi_{2} \vert )+ \cdots+t_{n}(x)\phi_{n}( \vert \xi_{n} \vert ))} \bigl(1+ \vert \xi_{1} \vert ^{2}\bigr)^{-\frac{s_{1}}{2}}\bigl(1+ \vert \xi_{2} \vert ^{2}\bigr) ^{-\frac{s_{2}}{2}} \cdots\\ &{}\times\bigl(1+ \vert \xi_{n} \vert ^{2}\bigr)^{-\frac{s_{n}}{2}} g(\xi)\,d \xi. \end{aligned}$$

By (3.3), to prove (3.2) it is sufficient to show that

$$ \Vert R_{\varPhi}g \Vert _{L^{q}(\mathbb{R}^{n})}\leq C \Vert g \Vert _{L^{2}(\mathbb{R}^{n})} $$
(3.4)

for g continuous and rapidly decreasing at infinity. We take a real-valued function \(\rho\in C_{0}^{\infty}(\mathbb{R}^{n})\) such that \(\rho(x)=1\) if \(|x|\leq1\) and \(\rho(x)=0\) if \(|x|\geq2\). And we choose a real-valued function \(\psi\in C_{0}^{\infty}(\mathbb{R})\) such that \(\psi(x)=1\) if \(|x|\leq1\) and \(\psi(x)=0\) if \(|x|\geq2\), and set \(\sigma(\xi )=\psi(\xi_{1})\psi(\xi_{2})\cdots\psi(\xi_{n})\) for \(\xi\in \mathbb{R}^{n}\). For \(N=1,2,3,\ldots\) , we set \(\rho_{N}(x)=\rho (\frac{x}{N})\) and \(\sigma_{N}(\xi)=\sigma(\frac{\xi}{N})\). For \(x\in\mathbb{R}^{n}\), \(g\in L^{2}(\mathbb{R}^{n})\), and \(N=1,2,3,\ldots\) , we define

$$\begin{aligned} R_{N,\varPhi}g(x)={}& \rho_{N}(x) \int_{\mathbb{R}^{n}} e^{ix\cdot\xi}e^{i(t_{1}(x) \phi_{1}( \vert \xi_{1} \vert )+t_{2}(x)\phi_{2}( \vert \xi_{2} \vert )+ \cdots+t_{n}(x)\phi_{n}( \vert \xi_{n} \vert ))} \bigl(1+ \vert \xi_{1} \vert ^{2}\bigr)^{-\frac{s_{1}}{2}}\bigl(1+ \vert \xi_{2} \vert ^{2}\bigr) ^{-\frac{s_{2}}{2}} \\ &{}\times \cdots\times\bigl(1+ \vert \xi_{n} \vert ^{2} \bigr)^{-\frac{s_{n}}{2}} \sigma_{N}(\xi)g(\xi)\,d\xi. \end{aligned}$$

The adjoint of \(R_{N,\varPhi}\) is given by

$$\begin{aligned} R^{\prime}_{N,\varPhi}h(\xi)={}& \sigma_{N}(\xi) \bigl(1+ \vert \xi_{1} \vert ^{2}\bigr)^{-\frac{s_{1}}{2}} \bigl(1+ \vert \xi_{2} \vert ^{2}\bigr) ^{-\frac{s_{2}}{2}} \cdots\bigl(1+ \vert \xi_{n} \vert ^{2}\bigr)^{-\frac{s_{n}}{2}} \int_{\mathbb{R}^{2}} e^{-ix\cdot\xi}e^{-it_{1}(x) \phi_{1}( \vert \xi_{1} \vert )} \\ &{}\times e^{-i(t_{2}(x)\phi_{2}( \vert \xi_{2} \vert )+ \cdots+t_{n}(x)\phi_{n}( \vert \xi_{n} \vert ))}\rho_{N}(x)h(x)\,dx, \end{aligned}$$

where \(\xi\in\mathbb{R}^{n}\) and \(h\in L^{2}(\mathbb{R}^{n})\). To prove (3.4) it suffices to prove that

$$ \Vert R_{N,\varPhi}g \Vert _{L^{q}(\mathbb{R}^{n})}\leq C \Vert g \Vert _{L^{2}(\mathbb{R}^{n})}. $$
(3.5)

By duality, to prove (3.5) it is sufficient to show that

$$ \bigl\Vert R_{N,\varOmega}^{\prime}h \bigr\Vert _{L^{2}(\mathbb{R}^{n})}\leq C \Vert h \Vert _{L^{q^{\prime}}(\mathbb{R}^{n})}, $$
(3.6)

where \(\frac{1}{q}+\frac{1}{q^{\prime}}=1\). Thus, we have

$$ \bigl\Vert R_{N,\varPhi}^{\prime}h \bigr\Vert _{L^{2}(\mathbb{R}^{n})}^{2}= \int \bigl\vert R^{\prime}_{N,\varPhi}h(\xi) \bigr\vert ^{2}\,d\xi = \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} K_{N}(x,y)\rho_{N}(x) \rho_{N}(y)h(x)\overline{h(y)}\,dx\,dy, $$
(3.7)

where

$$ K_{N}(x,y)=K^{1}_{N}(x,y) K^{2}_{N}(x,y)\cdots K^{n}_{N}(x,y), $$
(3.8)

and

$$ K^{i}_{N}(x,y)= \int_{\mathbb{R}}\bigl(1+\xi_{i}^{2} \bigr)^{-s_{i}} e^{i(y_{i}-x_{i})\xi_{i}} e^{i(t_{i}(y)-t_{i}(x))\phi(|\xi_{i}|)} \psi_{N}( \xi_{i})^{2}\,d\xi_{i}, $$
(3.9)

where \(i=1,2,\ldots,n\) and \(N=1,2,\ldots\) . Denote \(\alpha_{i}=2s_{i}\), since \(s_{i}=\frac{1}{2}-\frac{m_{i,2}}{4}+ \frac{m_{i,2}}{q}-\frac{1}{q}\), \(i=1,2,\ldots,n\), and \(2< q<4\), it follows that \(\frac{1}{2}<\alpha_{i}<\frac{m_{i,2}}{2}\), \(i=1,2,\ldots,n\). Therefore, by (3.9) and Lemma 1.4, we obtain

$$ \bigl\vert K^{i}_{N}(x,y) \bigr\vert \leq C\frac{1}{ \vert x_{i}-y_{i} \vert ^{\beta_{i}}}, $$
(3.10)

where \(\beta_{i}=\frac{\alpha_{i}+\frac{m_{i,2}}{2}-1}{ m_{i,2}-1}\). Denote \(\sigma_{i}=1-\beta_{i}\), we define

$$P_{i}f(x_{1},x_{2},\ldots, x_{n})= \int_{\mathbb{R}} \frac{1}{ \vert x_{i}-y_{i} \vert ^{1-\sigma_{i}}} f(x_{1}, \ldots,x_{i-1},y_{i}, x_{i+1},\ldots,x_{n}) \,dy_{i}, $$

\(i=1,2,\ldots,n\). Thus, by (3.7), (3.8), and (3.10), we obtain

$$\begin{aligned} &\int \bigl\vert R_{N,\varPhi}^{\prime}h(\xi) \bigr\vert ^{2}\,d\xi \\ &\quad \leq C \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{1}{ \vert x_{1}-y_{1} \vert ^{1-\sigma_{1}}} \frac{1}{ \vert x_{2}-y_{2} \vert ^{1-\sigma_{2}}} \cdots \frac{1}{ \vert x_{n}-y_{n} \vert ^{1-\sigma_{n}}} \bigl\vert h(x) \bigr\vert \bigl\vert h(y) \bigr\vert \,dx\,dy \\ &\quad = C \int_{\mathbb{R}^{n}} \biggl( \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}}\frac{1}{ \vert x_{n}-y_{n} \vert ^{1-\sigma_{n}}} \frac{1}{ \vert x_{n-1}-y_{n-1} \vert ^{1-\sigma_{n-1}}}\cdots \frac {1}{ \vert x_{3}-y_{3} \vert ^{1-\sigma_{3}}} \\ &\qquad{}\times\frac {1}{ \vert x_{2}-y_{2} \vert ^{1-\sigma_{2}}} \biggl( \int\frac {1}{ \vert x_{1}-y_{1} \vert ^{1-\sigma_{1}}} \bigl\vert h(y_{1},y_{2}, \ldots, y_{n}) \bigr\vert \,dy_{1} \biggr) \,dy_{2}\,dy_{3}\cdots \,dy_{n} \biggr) \bigl\vert h(x) \bigr\vert \,dx \\ &\quad = C \int_{\mathbb{R}^{n}}P_{n}P_{n-1}\cdots P_{2}P_{1} \vert h \vert (x) \bigl\vert h(x) \bigr\vert \,dx. \end{aligned}$$
(3.11)

Invoking Hölder’s inequality, we get

$$ \int \bigl\vert R_{N,\varPhi}^{\prime}h(\xi) \bigr\vert ^{2}\,d\xi\leq C \bigl\Vert P_{n}P_{n-1}\cdots P_{2}P_{1} \vert h \vert \bigr\Vert _{L^{q}(\mathbb{R}^{n})} \Vert h \Vert _{L^{q^{\prime}}(\mathbb{R}^{n})}. $$
(3.12)

Since \(\beta_{i}=\frac{\alpha_{i}+\frac{m_{i,2}}{2}-1}{m_{i,2}-1}\) and \(\alpha_{i}=2s_{i}\), \(s_{i}=\frac{1}{2}-\frac{m_{i,2}}{4}+ \frac{m_{i,2}}{q}-\frac{1}{q}\), \(i=1,2,\ldots,n\). It follows that \(\beta_{i}=\frac{2}{q}\) and \(\sigma_{i}=1-\beta_{i}=1-\frac {2}{q}\), \(\frac{1}{q}=\frac{1}{q^{\prime}}-\sigma_{i}\). Thus, estimate (3.6) follows from (3.12) and estimate (2.14) in the proof of Theorem 1.1. Now we complete the proof of Theorem 1.2.

4 The proof of Lemma 1.4

To prove Lemma 1.4, we need to present the following lemma.

Lemma 4.1

(see [33], pp. 309–312)

Assume that \(a< b\) and set \(I=[a,b]\). Let \(F\in C^{\infty}(I)\) be real-valued and assume that \(\psi\in C^{\infty}(I)\).

  1. (i)

    Assume that \(|F^{\prime}(x)|\geq\lambda>0\) for \(x\in I\) and that \(F^{\prime}\) is monotonic on I. Then

    $$\biggl\vert \int_{a}^{b}e^{iF(x)}\psi(x)\,dx \biggr\vert \leq C\frac{1}{\lambda }\biggl\{ \bigl\vert \psi(b) \bigr\vert + \int_{a}^{b} \bigl\vert \psi^{\prime}(x) \bigr\vert \,dx\biggr\} , $$

    where C does not depend on F, ψ, or I.

  2. (ii)

    Assume that \(|F^{\prime\prime}(x)|\geq\lambda>0\) for \(x\in I\). Then

    $$\biggl\vert \int_{a}^{b}e^{iF(x)}\psi(x)\,dx \biggr\vert \leq C\frac{1}{\lambda ^{1/2}}\biggl\{ \bigl\vert \psi(b) \bigr\vert + \int_{a}^{b} \bigl\vert \psi^{\prime}(x) \bigr\vert \,dx\biggr\} , $$

    where C does not depend on F, ψ, or I.

Proof of Lemma 1.4

By conditions (H1) and (H2), there exist positive constants \(C_{i}\) (\(i=1,2,\ldots,6\)) so that for \(r\geq1\) and \(m_{2}>1\) such that

$$ C_{1}r^{m_{2}-1}\leq \bigl\vert \phi^{\prime}(r) \bigr\vert \leq C_{2}r^{m_{2}-1} \quad\mbox{and}\quad \bigl\vert \phi^{\prime\prime}(r) \bigr\vert \geq C_{3}r^{m_{2}-2}, $$
(4.1)

and for \(0< r<1\) and \(m_{1}>1\) such that

$$ C_{4}r^{m_{1}-1}\leq \bigl\vert \phi^{\prime}(r) \bigr\vert \leq C_{5}r^{m_{1}-1} \quad\mbox{and}\quad \bigl\vert \phi^{\prime\prime}(r) \bigr\vert \geq C_{6}r^{m_{1}-2}. $$
(4.2)

Set

$$J= \int_{\mathbb{R}} \frac{e^{i(d\phi(|\xi|)-x\xi)}}{(1+\xi ^{2})^{\frac{\alpha}{2}}} \mu\biggl(\frac{\xi}{N} \biggr)\,d\xi. $$

To prove Lemma 1.4, it suffices to show that there exists a constant C such that for \(x\in\mathbb{R}\setminus\{ 0\}\), \(\beta=\frac{\alpha+\frac{m_{2}}{2}-1}{m_{2}-1}\) and \(N\in \Bbb {N}\),

$$ \vert J \vert \leq C\frac{1}{ \vert x \vert ^{\beta}}, $$
(4.3)

where C depends only on α, \(m_{1}\), \(m_{2}\), \(C_{i}\) \((i=1,2,\ldots,6)\), and μ.

Without loss of generality, we may assume \(\xi, d>0\). Denote \(\psi(\xi)={(1+\xi^{2})^{-\frac{\alpha}{2}}} \mu(\frac{\xi}{N})\), then we have

$$ \max_{\xi\geq0} \bigl\vert \psi(\xi) \bigr\vert + \int_{ 0}^{\infty} \bigl\vert \psi ^{\prime}( \xi) \bigr\vert \,d\xi\leq C. $$
(4.4)

In fact, since \(\mu\in C_{0}^{\infty}(\mathbb{R})\) and \(\frac {1}{2}\leq\alpha\leq\frac{m_{2}}{2}\), we get

$$ \max_{\xi\geq0} \bigl\vert \psi(\xi) \bigr\vert \leq C. $$
(4.5)

Noting that

$$ \psi^{\prime}(\xi) =-\alpha\xi{\bigl(1+\xi^{2} \bigr)^{-\frac{\alpha}{2}-1}} \mu \biggl(\frac{\xi}{N} \biggr) +{\bigl(1+ \xi^{2}\bigr)^{-\frac{\alpha}{2}}}\frac{1}{N} \mu^{\prime} \biggl(\frac{\xi}{N} \biggr), $$
(4.6)

we have

$$\begin{aligned} \int_{0}^{\infty} \bigl\vert \psi^{\prime}(\xi) \bigr\vert \,d\xi\leq{}&\alpha \int_{0}^{\infty}\xi{\bigl(1+\xi^{2} \bigr)^{-\frac{\alpha}{2}-1}} \biggl\vert \mu \biggl(\frac{\xi}{N} \biggr) \biggr\vert \,d\xi \\ &{}+ \int_{0}^{\infty}{\bigl(1+\xi^{2} \bigr)^{-\frac{\alpha}{2}}}\frac{1}{N} \biggl\vert \mu^{\prime} \biggl( \frac{\xi}{N} \biggr) \biggr\vert \,d\xi \\ =:{}&G_{1}+G_{2}. \end{aligned}$$
(4.7)

Since \(\mu\in C_{0}^{\infty}(\mathbb{R})\) and \(\frac{1}{2}\leq \alpha\leq\frac{m_{2}}{2}\), we obtain

$$ G_{1}\leq C \int_{0}^{\infty}\xi{\bigl(1+\xi^{2} \bigr)^{-\frac{\alpha }{2}-1}}\,d\xi =C \int_{0}^{\infty}{\bigl(1+\xi^{2} \bigr)^{-\frac{\alpha}{2}-1}}\,d\bigl(1+\xi ^{2}\bigr) =C $$
(4.8)

and

$$ G_{2}\leq C \int_{0}^{\infty}\frac{1}{N} \biggl\vert \mu^{\prime} \biggl(\frac{\xi}{N} \biggr) \biggr\vert \,d\xi\leq C. $$
(4.9)

By (4.7), (4.8), and (4.9), we get

$$ \int_{ 0}^{\infty} \bigl\vert \psi^{\prime}(\xi) \bigr\vert \,d\xi\leq C. $$
(4.10)

Therefore, (4.4) follows from (4.5) and (4.10).

To estimate (4.3), we choose a positive constant M such that \(M=\max\{(\frac{1}{\delta})^{m_{2}-1},2C_{5},2\}\), where δ is a small positive constant such that \(\delta ^{m_{2}-1}C_{2}\leq\frac{1}{2}\). Below, we show (4.3) by dividing two cases \(|x|\geq M\) and \(|x|< M\).

Case (I): \(|x|\geq M\). Let \(F(\xi)=d\phi(\xi)-x\xi\), we have

$$F^{\prime}(\xi)=d\phi^{\prime}(\xi)-x,\qquad F^{\prime\prime}(\xi )=d \phi^{\prime\prime}(\xi). $$

Denote \(\rho=(\frac{|x|}{d})^{\frac{1}{m_{2}-1}}\), then we have \(\delta\rho\geq1\). In fact, noting that \(|x|\geq(\frac{1}{\delta})^{m_{2}-1}\), \(0< d<1\), \(m_{2}>1\), and \(\frac{|x|}{d}>|x|\), it follows that \(\delta\rho >\delta|x|^{\frac{1}{m_{2}-1}}\geq1\). We choose a large positive constant λ such that \(\lambda\geq\max\{(\frac{2}{C_{1}}) ^{\frac{1}{m_{2}-1}},\delta\}\). Denote

$$I_{1}=[0,\delta\rho],\qquad I_{2}=[\delta\rho,\lambda\rho],\qquad I_{3}=[\lambda\rho,\infty). $$

Thus, we obtain

$$\begin{aligned} \vert J \vert &= \biggl\vert \int_{0}^{\infty}e^{iF(\xi)}\psi(\xi)\,d\xi \biggr\vert \leq \sum_{j=1}^{3} \biggl\vert \int_{I_{j}}e^{iF(\xi)}\psi(\xi)\,d\xi \biggr\vert =:\sum _{j=1}^{3} J_{j}. \end{aligned}$$
(4.11)

Firstly, we estimate \(J_{1}\). We will show that the following estimate holds:

$$ \bigl\vert F^{\prime}(\xi) \bigr\vert \geq \frac{ \vert x \vert }{2},\quad \xi\in[0,\delta \rho]. $$
(4.12)

Now we divide the verification of (4.12) into two cases according to the value of ξ.

Case (I-a): \(\xi\in[0,1)\). Since \(m_{1}>1\) and \(0< d<1\), we have

$$ d \bigl\vert \phi^{\prime}(\xi) \bigr\vert \leq C_{5} \,d \xi^{m_{1}-1}\leq C_{5}\leq \frac {M}{2}\leq\frac{ \vert x \vert }{2}. $$
(4.13)

By (4.13), if \(\xi\in[0,1)\), we get

$$ \bigl\vert F^{\prime}(\xi) \bigr\vert \geq \vert x \vert -d \bigl\vert \phi^{\prime}(\xi) \bigr\vert \geq \frac{ \vert x \vert }{2}. $$
(4.14)

Case (I-b): \(\xi\in[1,\delta\rho]\). Since \(m_{2}>1\), we have

$$ d \bigl\vert \phi^{\prime}(\xi) \bigr\vert \leq C_{2} \,d \xi^{m_{2}-1}\leq C_{2}\,d \delta ^{m_{2}-1}\frac{ \vert x \vert }{d}\leq C_{2} \delta^{m_{2}-1} \vert x \vert \leq\frac{ \vert x \vert }{2}. $$
(4.15)

By (4.15), we get

$$ \bigl\vert F^{\prime}(\xi) \bigr\vert \geq \vert x \vert -d \bigl\vert \phi^{\prime}(\xi) \bigr\vert \geq \frac{ \vert x \vert }{2}. $$
(4.16)

Therefore (4.12) follows from (4.14) and (4.16). Since \(\phi^{\prime}\) is monotonic on \(\mathbb{R}^{+}\) by condition (H3) and \(d>0\), it follows that \(F^{\prime}\) is monotonic on \(\xi\in I_{1}\). Thus, by (i) of Lemma 4.1 and estimate (4.12), (4.4), we have

$$ \vert J_{1} \vert \leq C\frac{1}{ \vert x \vert } \leq C \frac{1}{ \vert x \vert ^{\beta}}, $$
(4.17)

where we use \(|x|\geq2\) and the fact \(\frac{1}{2}\leq\beta\leq1\). Next we prove estimate \(J_{3}\). Since \(\xi\geq\lambda(\frac{|x|}{d})^{\frac{1}{m_{2}-1}}>1\) and \(\lambda\geq(\frac{2}{C_{1}})^{\frac{1}{m_{2}-1}}\),

$$d \bigl\vert \phi^{\prime}(\xi) \bigr\vert \geq C_{1} \,d \xi^{m_{2}-1}\geq C_{1} \,d\lambda ^{m_{2}-1} \frac{ \vert x \vert }{d}\geq2 \vert x \vert , $$

it follows that

$$ \bigl\vert F^{\prime}(\xi) \bigr\vert \geq2 \vert x \vert - \vert x \vert = \vert x \vert ,\quad \xi\in[\lambda\rho ,\infty). $$
(4.18)

Thus, by (i) of Lemma 4.1 and estimate (4.18), (4.4), we have

$$ \vert J_{3} \vert \leq C\frac{1}{ \vert x \vert } \leq C \frac{1}{ \vert x \vert ^{\beta}}, $$
(4.19)

where we use \(|x|\geq2\) and the fact \(\frac{1}{2}\leq\beta\leq1\). Now, we give estimate \(J_{2}\). Since \(\xi\in I_{2}\), we have \(|\xi|\geq1\). By (4.1), we obtain

$$ \bigl\vert F^{\prime\prime}(\xi) \bigr\vert \geq d \bigl\vert \phi^{\prime\prime}(\xi) \bigr\vert \geq C_{3}\,d \xi^{m_{2}-2} \geq C_{3}\,d \biggl(\frac{ \vert x \vert }{d} \biggr)^{\frac {m_{2}-2}{m_{2}-1}}. $$
(4.20)

We first prove that the following estimate holds:

$$ \max_{I_{2}} \vert \psi \vert + \int_{I_{2}} \bigl\vert \psi^{\prime} \bigr\vert \,d\xi \leq C \biggl(\frac{ \vert x \vert }{d} \biggr)^{-\frac{\alpha}{m_{2}-1}}. $$
(4.21)

In fact, since \(\mu\in C_{0}^{\infty}(\mathbb{R})\) and \(\frac {1}{2}\leq\alpha\leq\frac{m_{2}}{2}\), we get

$$ \max_{\xi\in A_{2}} \bigl\vert \psi(\xi) \bigr\vert \leq C(\delta\rho)^{-\alpha }=C\delta^{-\alpha}(\rho)^{-\alpha}= C \delta^{-\alpha} \biggl(\frac{ \vert x \vert }{d} \biggr)^{-\frac{\alpha}{m_{2}-1}}. $$
(4.22)

By (4.6), we have

$$\begin{aligned} \int_{A_{2}} \bigl\vert \psi^{\prime}(\xi) \bigr\vert \,d\xi &\leq\alpha \int_{A_{2}}\xi{\bigl(1+\xi^{2}\bigr)^{-\frac{\alpha}{2}-1}} \biggl\vert \mu \biggl(\frac{\xi}{N} \biggr) \biggr\vert \,d\xi+ \int_{A_{2}}{\bigl(1+\xi^{2}\bigr)^{-\frac{\alpha}{2}}} \frac{1}{N} \biggl\vert \mu^{\prime} \biggl(\frac{\xi}{N} \biggr) \biggr\vert \,d\xi \\ &=:L_{1}+L_{2}. \end{aligned}$$
(4.23)

Since \(\mu\in C_{0}^{\infty}(\mathbb{R})\) and \(\frac{1}{2}\leq \alpha\leq\frac{m_{2}}{2}\), we obtain

$$ L_{1}\leq C \int_{A_{2}}\xi{\bigl(1+\xi^{2}\bigr)^{-\frac{\alpha}{2}-1}} \,d\xi \leq C \int_{\delta\rho}^{\lambda\rho}\xi^{-\alpha-1}\,d\xi =C \biggl( \frac{ \vert x \vert }{d} \biggr)^{-\frac{\alpha}{m_{2}-1}} $$
(4.24)

and

$$ L_{2}\leq C (\delta\rho)^{-\alpha} \int_{A_{2}}\frac{1}{N} \biggl\vert \mu^{\prime} \biggl(\frac{\xi}{N} \biggr) \biggr\vert \,d\xi\leq C \biggl( \frac{ \vert x \vert }{d} \biggr)^{-\frac{\alpha}{m_{2}-1}}. $$
(4.25)

By (4.23), (4.24), and (4.25), we get

$$ \int_{ 0}^{\infty} \bigl\vert \psi^{\prime}(\xi) \bigr\vert \,d\xi\leq C \biggl(\frac { \vert x \vert }{d} \biggr)^{-\frac{\alpha}{m_{2}-1}}. $$
(4.26)

Therefore, (4.21) follows from (4.22) and (4.26). Thus, by (ii) of Lemma 4.1 and estimate (4.20), (4.21), we have

$$ \vert J_{2} \vert \leq d^{-\frac{1}{2}} \biggl( \frac{ \vert x \vert }{d} \biggr)^{-\frac {m_{2}-2}{2(m_{2}-1)}} \biggl(\frac{ \vert x \vert }{d} \biggr)^{-\frac{\alpha}{m_{2}-1}} =C\frac{d^{\frac{\alpha-\frac{1}{2}}{m_{2}-1}}}{ \vert x \vert ^{\frac{\alpha+\frac{m_{2}}{2}-1}{m_{2}-1}}}\leq C\frac{1}{ \vert x \vert ^{\beta}}. $$
(4.27)

Here in the last inequality we use the fact \(\frac{\alpha-\frac{1}{2}}{m_{2}-1}\geq0\) and \(0< d<1\). Therefore, for \(|x|\geq M\), by estimates (4.11), (4.17), (4.19), and (4.27), it follows (4.3).

Case (II): \(|x|< M\). Now we divide the verification of (4.3) into three cases according to the value of α for \(|x|< M\).

Case (II-a): \(\alpha>1\). Since \(\mu\in C_{0}^{\infty}(\mathbb{R})\) and \(\alpha>1\), we get

$$ \vert J \vert = \biggl\vert \int_{0}^{\infty} \frac{e^{i(d\phi( \vert \xi \vert )-x\xi )}}{(1+\xi^{2})^{\frac{\alpha}{2}}} \mu\biggl( \frac{\xi}{N}\biggr)\,d\xi \biggr\vert \leq C \int_{0}^{\infty} \frac {1}{{(1+\xi^{2})^{\frac{\alpha}{2}}}}\,d\xi\leq C. $$
(4.28)

Noting that \(|x|< M\) and \(\frac{1}{2}\leq\beta\leq1\), by (4.28), we have

$$\vert J \vert \leq C=C \vert x \vert ^{\beta}\frac{1}{ \vert x \vert ^{\beta}} \leq CM^{\beta}\frac {1}{ \vert x \vert ^{\beta}}=C\frac{1}{ \vert x \vert ^{\beta}}, $$

which follows (4.3).

Case (II-b): \(\frac{1}{2}\leq\alpha<1\). By the mean value theorem, when \(\frac{1}{2}\leq\alpha<1\), we have

$$ 0< \bigl(1+\xi^{2}\bigr)^{\frac{\alpha}{2}}- \xi^{\alpha} =\bigl(1+\xi^{2}\bigr)^{\frac{\alpha}{2}}-\bigl( \xi^{2}\bigr)^{\frac{\alpha}{2}} \leq\frac{\alpha}{2}\bigl( \xi^{2}\bigr)^{\frac{\alpha}{2}-1}\leq\xi ^{\alpha-2}. $$
(4.29)

By (4.29), we obtain

$$ \frac{1}{\xi^{\alpha}}-\frac{1}{(1+\xi^{2})^{\frac{\alpha}{2}}} =O \biggl(\frac{1}{\xi^{\alpha+2}} \biggr),\quad \xi\rightarrow\infty. $$
(4.30)

Noting that \(\frac{1}{2}\leq\alpha<1\), by (4.30), we have

$$ \int_{0}^{\infty} \biggl\vert \frac{1}{\xi^{\alpha}}- \frac{1}{(1+\xi^{2})^{\frac{\alpha}{2}}} \biggr\vert \,d\xi \leq C $$
(4.31)

and

$$\begin{aligned} \vert J \vert = \biggl\vert \int_{0}^{\infty} \frac{e^{i(d\phi( \vert \xi \vert )-x\xi )}}{(1+\xi^{2})^{\frac{\alpha}{2}}} \mu\biggl( \frac{\xi}{N}\biggr)\,d\xi \biggr\vert \leq{}& \biggl\vert \int_{0}^{\infty}e^{i(d\phi( \vert \xi \vert )-x\xi)} \biggl( \frac{1}{(1+\xi^{2})^{\frac{\alpha}{2}}} -\frac{1}{\xi^{\alpha}} \biggr)\mu\biggl(\frac{\xi}{N}\biggr) \,d\xi \biggr\vert \\ &{} + \biggl\vert \int_{0}^{\infty}e^{i(d\phi( \vert \xi \vert )-x\xi)} \frac{1}{\xi^{\alpha}}\mu \biggl(\frac{\xi}{N}\biggr)\,d\xi \biggr\vert \\ ={}& :K_{1}+K_{2}. \end{aligned}$$

By (4.31), we have

$$ \vert K_{1} \vert \leq C=C \vert x \vert ^{\beta}\frac{1}{ \vert x \vert ^{\beta}}\leq CM^{\beta}\frac {1}{ \vert x \vert ^{\beta}}=C \frac{1}{ \vert x \vert ^{\beta}}. $$
(4.32)

By Lemma 1.3, we obtain

$$ \vert K_{2} \vert \leq C\frac{1}{ \vert x \vert ^{1-\alpha}}. $$
(4.33)

Noting that \(\frac{1}{|x|}>\frac{1}{M}\), and the fact \(\beta \geq1-\alpha\), it follows from \(\frac{1}{2}\leq\alpha<1\), \(\frac {1}{2}\leq\beta\leq1 \) that

$$ \vert x \vert ^{1-\alpha}= \vert x \vert ^{\beta} \vert x \vert ^{1-\alpha-\beta} = \vert x \vert ^{\beta} \biggl(\frac{1}{ \vert x \vert } \biggr)^{\beta-(1-\alpha)}\geq C \vert x \vert ^{\beta}. $$
(4.34)

Therefore, by (4.33) and (4.34), we have

$$ \vert K_{2} \vert \leq C\frac{1}{ \vert x \vert ^{\beta}}. $$
(4.35)

Hence, (4.3) holds from (4.32) and (4.35).

Case (II-c): \(\alpha=1\). From the proof of Lemma 1.3, noting that \(M\geq2\), we may get

$$ \vert J \vert \leq C \log\biggl(\frac{1}{ \vert x \vert }\biggr) \quad\text{if } 0< \vert x \vert \leq \frac{1}{2} $$
(4.36)

and

$$ \vert J \vert \leq C \quad\text{if } \frac{1}{2}< \vert x \vert < M. $$
(4.37)

By (4.36) and \(\frac{1}{2}\leq\beta\leq1\), for \(0<|x|\leq\frac{1}{2}\), we have

$$ \vert J \vert \leq C \log\biggl(\frac{1}{ \vert x \vert }\biggr)\leq C\frac{1}{ \vert x \vert ^{\beta}}. $$
(4.38)

By (4.37), for \(\frac{1}{2}<|x|<M\), we have

$$ \vert J \vert \leq C=C \vert x \vert ^{\beta} \frac{1}{ \vert x \vert ^{\beta}}\leq CM^{\beta}\frac {1}{ \vert x \vert ^{\beta}}=C\frac{1}{ \vert x \vert ^{\beta}}. $$
(4.39)

Thus, for \(\alpha=1\), \(|x|< M\), by (4.38) and (4.39), we get

$$\vert J \vert \leq C\frac{1}{ \vert x \vert ^{\beta}}, $$

which is just estimate (4.3).

Summing up all the above estimates, we complete the proof of estimate (4.3) and finish the proof of Lemma 1.4. □

5 Conclusion

In this paper, by linearizing the maximal operator and duality methods, and applying the results of Lemma 1.3 and Lemma 1.4, we obtain the maximal global \(L^{q}\) inequalities (1.8) and (1.9) for multiparameter oscillatory integral \(S_{t,\varPhi}\). These estimates are apparently good extensions to maximal global \(L^{q}\) inequalities (1.6) and (1.7) for the multiparameter fractional Schrödinger equation in [32].