1 Introduction and preliminaries

The unit fractional decomposition of certain rational fractions was considered one of fascinating problems by the ancient Egyptians. One of such problems is a well-known conjecture due to Erdos and Strauss in 1948. They conjectured that for each \(n>1\), the Diophantine equation

$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} $$

has a solution in positive integers \(x, y\), and z. Although it has been investigated by many mathematicians, the conjecture is still open. A good number of partial results have been obtained by several mathematicians (see [1, 3, 5, 6, 8, 9]). Mordell [7] has proven that the conjecture is true for all n except possibly cases in which n is congruent to \(1, 121, 169, 289, 361, 529\ ( \mathrm{mod}\ 840)\). For the extensive literature +Sierpinski, Schinzel, and others, we refer the reader to [4]. Recently, Elsholtz and Tao [2] investigated the average behavior of a number of positive integer solutions in \(x, y\), and z of the above Diophantine equation in the case when n is prime.

In this paper, we consider an analogue of the above conjecture of Erdos and Strauss. More precisely, we study the Diophantine equation

$$ \frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{ 2} $$
(1.1)

and give a detailed solution to Eq. (1.1). We also draw our attention to some of the generalizations of Eq. (1.1). We use elementary arguments and inequalities to prove the results.

2 Main results and discussion

In this section, we first find the solutions in positive integers \(x, y, z\), and w of Eq. (1.1).

Without loss of generality, we may assume that \(w\leq x\leq y\leq z\). Then Eq. (1.1) gives:

  1. (a)

    \(\frac{1}{w} < \frac{1}{2} \) and thus \(w\geq3\);

  2. (b)

    \(\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{4}{z}\) and thus \(z \geq 8\); and

  3. (c)

    \(\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \leq \frac{4}{w}\) and thus \(w\leq8\).

Using (a) and (c), we see that \(w\in\{3, 4, 5, 6, 7, 8\}\). Thus Eq. (1.1) can be rewritten as follows:

When \(w=3\),

$$\begin{aligned} \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{6}, \end{aligned}$$
(2.1)

When \(w=4\),

$$ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{4}, $$
(2.2)

When \(w=5\),

$$ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{3}{10}, $$
(2.3)

When \(w=6\),

$$ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{3}, $$
(2.4)

When \(w=7\),

$$ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{5}{14}, $$
(2.5)

When \(w=8\),

$$ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{3}{8}. $$
(2.6)

We now find the solution of Eq. (2.1).

Clearly \(\frac{1}{x} < \frac{1}{6}\) and thus \(x>6\).

Under the assumption \(x\leq y\leq z\), Eq. (2.1) gives \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \leq \frac{3}{x}\) and thus \(x\leq18\).

Hence \(x\in \{ 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 \}\), and thus we have the following cases:

For \(x=7\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{42}, $$
(2.7)

For \(x=8\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{24}, $$
(2.8)

For \(x=9\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{18}, $$
(2.9)

For \(x=10\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{15}, $$
(2.10)

For \(x=11\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{5}{66}, $$
(2.11)

For \(x=12\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{12}, $$
(2.12)

For \(x=13\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{7}{78}, $$
(2.13)

For \(x=14\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{2}{21}, $$
(2.14)

For \(x=15\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{10}, $$
(2.15)

For \(x=16\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{5}{48}, $$
(2.16)

For \(x=17\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{11}{102}, $$
(2.17)

For \(x=18\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{9}. $$
(2.18)

Equations (2.7), (2.8), (2.9), (2.10), (2.12), (2.14), (2.15), (2.18) may be written as follows:

$$\begin{aligned} &(y-42) (z-42) = 1764, \end{aligned}$$
(2.7′)
$$\begin{aligned} &(y-24) (z-24) =576, \end{aligned}$$
(2.8′)
$$\begin{aligned} &(y-18) (z-18) = 324, \end{aligned}$$
(2.9′)
$$\begin{aligned} &(y-15) (z-15) = 225, \end{aligned}$$
(2.10′)
$$\begin{aligned} &(y-12) (z-12) = 144, \end{aligned}$$
(2.12′)
$$\begin{aligned} &(y-10) (z-10) = 100, \end{aligned}$$
(2.15′)
$$\begin{aligned} &(y-9) (z-9) = 81. \end{aligned}$$
(2.18′)

Under the assumption \(x\leq y\leq z\), Eq. (2.1) gives \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{3}{z}\) and thus

$$ z\geq18. $$
(2.13)

Under inequality (2.13) and \((y-42)\leq(z-42)\), Eq. (2.7′) leads to:

$$\begin{aligned} &(y-42)=1,\qquad (z-42)=1764, \\ &(y-42)=2,\qquad (z-42)=882, \\ &(y-42)=3,\qquad (z-42)=588, \\ &(y-42)=4,\qquad (z-42)=441, \\ &(y-42)=6,\qquad (z-42)=294, \\ &(y-42)=7,\qquad (z-42)=252, \\ &(y-42)=9,\qquad (z-42)=196, \\ &(y-42)=12,\qquad (z-42)=147, \\ &(y-42)=14,\qquad (z-42)=126, \\ &(y-42)=18,\qquad (z-42)=98. \end{aligned}$$

Thus \(( y, z ) \in \{ ( 43, 1806 ), ( 44, 924 ), ( 45, 630 ), ( 46,483 ), ( 48, 336 ), ( 49, 294 ), ( 51, 238 ), ( 54, 189 ), (56, 168), ( 60, 140 ) \}\).

Hence Eq. (2.7′) leads to the following solutions of Eq. (1.1):

$$\begin{aligned} ( w, x, y, z ) \in{}& \bigl\{ ( 3, 7, 43, 1806 ), ( 3, 7, 44, 924 ), ( 3, 7, 45, 630 ), ( 3, 7, 46,483 ), ( 3, 7, 48, 336 ), \\ & ( 3, 7, 49, 294 ), ( 3, 7, 51, 238 ), ( 3, 7, 54, 189 ), (3, 7, 56, 168), ( 3, 7, 60, 140 ) \bigr\} . \end{aligned}$$

Under inequality (2.13) and \((y-24)\leq(z-24)\), Eq. (2.8′) gives the following solutions:

$$\begin{aligned} ( y, z ) ={}&\bigl\{ ( 25, 600 ), ( 26, 312 ), ( 27, 216 ), ( 28, 168 ), ( 30, 120 ), ( 32, 96), (33, 88 ), ( 36, 72 ), \\ & ( 40, 60 ), (42, 56)\bigr\} . \end{aligned}$$

Hence Eq. (2.8′) leads to the following solutions of Eq. (1.1):

$$\begin{aligned} ( w, x,y, z ) \in{}&\bigl\{ ( 3, 8, 25, 600 ), ( 3, 8, 26, 312 ), ( 3, 8, 27, 216 ), ( 3, 8, 28, 168 ), ( 3, 8, 30, 120 ), \\ &( 3, 8, 32, 96), (3, 8, 33, 88 ), ( 3, 8, 36, 72 ), ( 3, 8, 40, 60 ), (3, 8, 42, 56)\bigr\} . \end{aligned}$$

Under inequality (2.13) and \((y-18)\leq(z-18)\), Eq. (2.9′) gives the following solutions:

$$( y,z ) \in\bigl\{ ( 19,342 ), ( 20, 180 ), ( 21,126 ), ( 22, 99 ), ( 24, 72 ), ( 27, 54 ), ( 30, 45 ), (36, 36)\bigr\} . $$

Hence Eq. (2.9′) leads to the following solutions of Eq. (1.1):

$$\begin{aligned} ( w, x,y,z ) \in{}&\bigl\{ ( 3, 9,19,342 ), ( 3, 9,20, 180 ), ( 3, 9,21,126 ), ( 3, 9,22, 99 ), ( 3, 9,24, 72 ), \\ &( 3, 9,27, 54 ), ( 3, 9,30, 45 ), (3, 9,36, 36)\bigr\} . \end{aligned}$$

Under inequality (2.13) and \((y-15)\leq(z-15)\), Eq. (2.10′) gives the following solutions:

$$( y,z ) \in \bigl\{ ( 16, 240 ), ( 18, 90 ), ( 20, 60 ), ( 24, 40 ), ( 30, 30 ) \bigr\} . $$

Hence Eq. (2.10′) leads to the following solutions of Eq. (1.1):

$$( w, x, y,z ) \in \bigl\{ ( 3, 10, 16, 240 ), ( 3, 10, 18, 90 ), ( 3, 10, 20, 60 ), ( 3, 10, 24, 40 ), ( 3, 10, 30, 30 ) \bigr\} . $$

Under inequality (2.13) and \((y-12)\leq(z-12)\), Eq. (2.12′) gives the following solutions:

$$( y,z ) \in \bigl\{ ( 13,156 ), ( 14, 84 ), ( 15,60 ), ( 16,48 ), ( 18,36 ), ( 20, 30 ), ( 21, 28 ), ( 24, 24 ) \bigr\} . $$

Hence Eq. (2.12′) leads to the following solutions of Eq. (1.1):

$$\begin{aligned} ( w, x,y,z ) \in{}&\bigl\{ ( 3, 12, 13,156 ), ( 3, 12, 14, 84 ), ( 3, 12, 15,60 ), ( 3, 12, 16,48 ), ( 3, 12, 18,36 ), \\ &( 3, 12, 20, 30 ), ( 3, 12, 21, 28 ), ( 3, 12, 24, 24 ) \bigr\} . \end{aligned}$$

Under inequality (2.13) and \((y-10)\leq(z-10)\), Eq. (2.15′) gives the following solutions:

$$( y,z ) \in\bigl\{ ( 11,110 ), ( 12, 60 ), ( 14, 35 ), ( 15, 30 ), ( 20,20 ) \bigr\} . $$

Hence Eq. (2.15′) leads to the following solutions of Eq. (1.1):

$$( w,x,y,z ) \in\bigl\{ ( 3,15,11,110 ), ( 3,15,12, 60 ), ( 3,15,14, 35 ), ( 3,15,15, 30 ), ( 3,15, 20,20 ) \bigr\} . $$

Under inequality (2.13) and \((y-9)\leq(z-9)\), Eq. (2.18′) gives the following solutions:

$$( y,z ) \in \bigl\{ ( 10,90 ), ( 12,36 ), ( 18,18 ) \bigr\} . $$

Hence Eq. (2.18′) leads to the following solutions of Eq. (1.1):

$$( w,x,y,z ) \in \bigl\{ ( 3,18, 10,90 ), ( 3,18, 12,36 ), ( 3,18, 18,18 ) \bigr\} . $$

Since \(y\leq z\), \(\frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}\) and thus Eq. (2.11) gives

$$\frac{5}{66} \leq \frac{2}{y} \quad\Rightarrow\quad y \leq 26. $$

Again we have \(y \geq x=11\) and hence \(y\in\{11,12,13,\ldots,26\}\). Therefore the solutions of Eq. (2.11) are as follows:

$$( y,z ) \in \bigl\{ ( 14,231 ), ( 15,110 ), ( 22,22 ) \bigr\} . $$

Hence Eq. (2.11) leads to the following solutions of Eq. (1.1):

$$( w,x,y,z ) \in \bigl\{ ( 3,11,14,231 ), ( 3,11,15,110 ), ( 3,11,22,22 ) \bigr\} . $$

Since \(y\leq z\), \(\frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}\) and thus Eq. (2.13) gives

$$\frac{7}{78} \leq \frac{2}{y}\quad \Rightarrow \quad y \leq 22. $$

Again we have \(y \geq x=13\) and hence \(y\in\{13,14,\ldots,22\}\). Therefore the solutions of Eq. (2.13) are as follows:

$$( y,z ) = ( 13,78 ). $$

Hence Eq. (2.13) leads to the following solutions of Eq. (1.1):

$$( w,x,y,z ) = ( 3,13,13,78 ). $$

Since \(y\leq z\), \(\frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}\) and thus Eq. (2.14) gives

$$\frac{2}{21} \leq \frac{2}{y} \quad\Rightarrow\quad y \leq 21. $$

Again we have \(y \geq x=14\) and hence \(y\in\{14,\ldots,21\}\). Therefore the solutions of Eq. (2.14) are as follows:

$$( y,z ) \in \bigl\{ ( 14,42 ), ( 15, 35 ), ( 21, 21 ) \bigr\} . $$

Hence Eq. (2.14) leads to the following solutions of Eq. (1.1):

$$( w,x,y,z ) \in \bigl\{ ( 3, 14, 14,42 ), ( 3, 14, 15, 35 ), ( 3, 14, 21, 21 ) \bigr\} . $$

Since \(y\leq z\), \(\frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}\) and thus Eq. (2.16) gives

$$\frac{5}{48} \leq \frac{2}{y} \quad\Rightarrow\quad y \leq 19. $$

Again we have \(y \geq x=16\) and hence \(y\in\{16, 17,18,19\}\). Therefore the solutions of Eq. (2.16) are as follows:

$$( y,z ) = ( 16,24 ). $$

Hence Eq. (2.16) leads to the following solutions of Eq. (1.1):

$$( w,x,y,z ) = ( 3,16,16,24 ). $$

Since \(y\leq z\), \(\frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}\) and thus Eq. (2.17) gives

$$\frac{11}{102} \leq \frac{2}{y}\quad \Rightarrow\quad y \leq 18. $$

Again we have \(y \geq x=17\) and hence \(y\in\{17,18\}\).

This shows that Eq. (2.17) has no integer solution and hence Eq. (1.1) too has no integer solutions.

We now solve Eq. (2.2), that is, Eq. (1.1) when \(w =4\).

It is clear that \(\frac{1}{x} < \frac{1}{4} \Rightarrow x>4\).

Under the assumption \(x\leq y\leq z\), Eq. (2.2) gives \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \leq \frac{3}{x}\) and thus \(x\leq12\).

Hence \(x\in\{5,6,7,8,9 10,11, 12\}\) and thus we have the following cases:

For \(x=5\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{20}, $$
(2.14)

For \(x=6\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{12}, $$
(2.15)

For \(x=7\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{3}{28}, $$
(2.16)

For \(x=8\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{8}, $$
(2.17)

For \(x=9\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{5}{36}, $$
(2.18)

For \(x=10\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{3}{20}, $$
(2.19)

For \(x=11\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{7}{44}, $$
(2.20)

For \(x=12\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{6}. $$
(2.21)

Solving Eqs. (2.14)–(2.21) by the above procedure, we get:

$$\begin{aligned} ( x, y,z ) \in{}&\bigl\{ (5,21,420),(2,22,220),(5,24,120),(5,25,100),(5,28,70),(5,30,60), \\ &( 6,13,156 ), ( 6,14,84 ), ( 6,15,60 ), ( 6,16,48 ), ( 6,18,36 ), ( 6,20,30 ), ( 6,21,28 ),\\& ( 6,24,24 ), ( 8,9,72 ), ( 8,10,40 ), ( 8,12,24 ), ( 8,26,20 ), ( 12,7,42 ),\\ & ( 12,8,24 ), ( 12,9,18 ), ( 12,10,15 ),(12,12,12),(7,10,140),(7,12,42),\\ &(7,14,28),(9,9,36),(9,12,18),(10,10,20),(10,12,15) \bigr\} . \end{aligned}$$

We now solve Eq. (2.3), that is, Eq. (1.1) when \(w=5\).

We see that \(\frac{1}{x} < \frac{3}{10} \Rightarrow x\geq3\).

Under the assumption \(x\leq y\leq z\), Eq. (2.3) gives \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \leq \frac{3}{x}\) and thus \(x\leq10\).

Hence \(x\in\{3, 4,5,6,7,8,9,10\}\) and thus Eq. (2.3) leads to the following equations:

For \(x=3\),

$$ \frac{1}{y} + \frac{1}{z} =- \frac{1}{10}, $$
(2.22)

For \(x=4\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{20}, $$
(2.23)

For \(x=5\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{10}, $$
(2.24)

For \(x=6\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{2}{15}, $$
(2.25)

For \(x=7\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{11}{70}, $$
(2.26)

For \(x=8\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{7}{40}, $$
(2.27)

For \(x=9\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{17}{90}, $$
(2.28)

For \(x=10\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{5}. $$
(2.29)

We avoid Eq. (2.22) because it leads to negative solutions.

Solving Eqs. (2.23)–(2.29) by the above procedure, we get:

$$\begin{aligned} ( x, y, z ) \in{}&\bigl\{ ( 4,21, 420 ), ( 4, 22, 220 ), ( 4, 24, 120 ), ( 4, 25, 100 ), ( 4, 28, 70 ), ( 4, 30, 60 ), \\ &( 4, 40, 40 ), ( 5,11,110 ), ( 5,12,60 ), ( 5,14,35 ), ( 5,15,30 ), ( 5,20,20 ), ( 10,6,30 ),\\ & ( 10,10,10 ), (6,8,120),(6,9,45),(6,10,30),(6,12,20),(6,15,15),(7,7,70),\\ &(8,8,20)\bigr\} . \end{aligned}$$

We now solve Eq. (2.4), that is, Eq. (1.1) when \(w=6\).

It is clear that \(\frac{1}{x} < \frac{1}{3} \Rightarrow x >3\).

Under the assumption \(x\leq y\leq z\), Eq. (2.4) gives \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \leq \frac{3}{x}\) and thus \(x\leq9\).

Hence \(x\in\{4,5,6,7,8,9\}\) and thus Eq. (2.4) leads to the following equations:

For \(x=4\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{12}, $$
(2.30)

For \(x=5\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{2}{15}, $$
(2.31)

For \(x=6\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{6}, $$
(2.32)

For \(x=7\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{4}{21}, $$
(2.33)

For \(x=8\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{5}{24}. $$
(2.34)

Solving Eqs. (2.30)–(2.26) by the above procedure, we get:

$$\begin{aligned} ( x,y,z ) \in{}&\bigl\{ (4,13,156),(4,14,84),(4,15,60),(4,16,48),(4,18,36),(4,20,30),(4,21,28), \\ &( 6,7,42 ), ( 6,8,24 ), ( 6,9,18 ), ( 6,10,15 ), ( 6,12,12 ), ( 6,15,10 ), ( 5,8,120 ),\\ & ( 5,9,45 ), ( 5,10,30 ), (5,12,20),(5,15,15), (7,7,21),(8,8,12),(8,12,8),\\ &(8,24,6)\bigr\} . \end{aligned}$$

We now solve Eq. (2.5), that is, Eq. (1.1) when \(w=7\).

It is clear that \(\frac{1}{x} < \frac{5}{14} \Rightarrow x\geq2\).

Under the assumption \(x\leq y\leq z\), Eq. (2.5) gives \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \leq \frac{3}{x}\) and thus \(x\leq8\).

Hence \(x\in\{2, 3,4,5,6,7,8\}\) and thus Eq. (2.5) leads to the following equations:

For \(x=2\),

$$ \frac{1}{y} + \frac{1}{z} =- \frac{1}{7}, $$
(2.35)

For \(x=3\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{42}, $$
(2.36)

For \(x=4\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{3}{28}, $$
(2.37)

For \(x=5\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{11}{70}, $$
(2.38)

For \(x=6\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{4}{21}, $$
(2.39)

For \(x=8\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{3}{14}. $$
(2.40)

We avoid Eq. (2.35) because it leads to negative solutions.

Solving Eqs. (2.36)–(2.40) by the above procedure, we get:

$$\begin{aligned} ( x, y, z ) \in{}&\bigl\{ (3,43,1806),(3,44,924),(3,45,630),(3,48,483),(3,49,294),(6,6,42), \\ &(6,7,21),(6,9,18), (6,10,15),(6,12,12),(4,10,140),(4,12,42),\\ &(4,14,28),(5,7,70) \bigr\} . \end{aligned}$$

Finally, we solve Eq. (2.6), that is, Eq. (1.1) when \(w=8\).

We observe that \(\frac{1}{x} < \frac{3}{8} \Rightarrow x\geq2\).

Under the assumption \(x\leq y\leq z\), Eq. (2.6) gives \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \leq \frac{3}{x}\) and thus \(x\leq8\).

Hence \(x\in\{2, 3,4,5,6,7,8 \}\) and thus Eq. (2.6) leads to the following equations:

For \(x=2\),

$$ \frac{1}{x} + \frac{1}{y} =- \frac{1}{8}, $$
(2.41)

For \(x=3\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{24}, $$
(2.42)

For \(x=4\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{8}, $$
(2.43)

For \(x=5\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{7}{40}, $$
(2.44)

For \(x=6\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{5}{24}, $$
(2.45)

For \(x=7\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{13}{56}, $$
(2.46)

For \(x=8\),

$$ \frac{1}{y} + \frac{1}{z} = \frac{1}{4}. $$
(2.47)

We avoid Eq. (2.41) because it leads to negative solutions.

Solving Eqs. (2.42)–(2.47) by the above procedure, we get:

$$\begin{aligned} ( x, y, z ) \in&{}\bigl\{ (3,25,600),(3,26,312),(3,27,213),(3,28,168),(3,30,120),(3,32,96), \\ &( 4,9,72 ), ( 4,10,40 ), ( 4,12,24 ), ( 4,16,16 ), ( 8,5,20 ), ( 8,6,12 ), ( 8,8,8 ), \\ & ( 5,6,120 ),( 5,8,20 ), ( 6,9,72 ),(6,10,40), (6,12,24),(6,16,16)\bigr\} . \end{aligned}$$

The above solutions (\(w,x, y, z\)) are found under the assumption \(w\leq x\leq y\leq z\). Thus we can conclude that any permutation of (\(w, x,y, z\)) is a solution of Eq. (1.1).

We now state the following theorem which follows the above discussion.

Theorem 2.1

The equation \(\frac{1}{w} + \frac{1}{x} + \frac{1}{ y} + \frac{1}{z} = \frac{1}{2}\) has only a finite number of solutions in the positive integers \(w, x, y\), and z.

We now state and prove general results.

Theorem 2.2

The Diophantine equation

$$ \frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{m}{ n}, $$
(2.48)

where \(m, n>1\) are integers, has only a finite number of solutions in the positive integers \(w, x, y\), and z.

Proof

Let us assume that \(w \leq x \leq y \leq z\). Then

$$\begin{aligned} \frac{4}{z} &\leq \frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \leq \frac{4}{w} \\ &\Rightarrow \frac{4}{z} \leq \frac{m}{n} \leq \frac{4}{w} \\ &\Rightarrow \frac{1}{z} \leq \frac{m}{4n} \leq \frac{1}{w} \\ &\Rightarrow z\geq \frac{4n}{m} \geq w. \end{aligned}$$

Again \(\frac{1}{w} < \frac{m}{n} \) and thus \(w > \frac{n}{m}\).

This shows that \(w\in ( \frac{n}{m}, \frac{4n}{m}]\) and hence xhas only a finite number of integer values.

Now let \(w = p_{1}\) be such an integer value. Then Eq. (2.48) gives

$$ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{m}{n} - \frac{1}{ p_{1}} = \frac{p_{1} m-n}{p_{1} n} = \frac{m_{2}}{n_{2}}. $$
(2.49)

Also, \(x\leq y\leq z\Rightarrow \frac{3}{z} \leq \frac{m_{1}}{n_{1}} \leq \frac{3}{x} \Rightarrow x\leq \frac{3 n_{1}}{m_{1}} \leq z\).

But \(x> \frac{n_{1}}{m_{1}}\) as \(\frac{1}{x} < \frac{m_{1}}{n_{1}}\). Thus \(x\in ( \frac{n_{1}}{m_{1}}, \frac{3 n_{1}}{m_{1}}]\) and hence xcan take only a finite number of integer values. Let \(x= p_{2}\) be such a value. Then Eq. (2.49) implies

$$ \frac{1}{y} + \frac{1}{z} = \frac{m_{1}}{n_{1}} - \frac{1}{p_{2}} = \frac{m_{2}}{n_{2}}. $$
(2.50)

Since \(\frac{m_{2}}{n_{2}} \leq \frac{2}{y} \), so that \(y\in [ p_{2}, \frac{2 n_{2}}{m_{2}} ]\) and thus ycan also take only a finite number of integer values. Finally, if \(y= p_{3}\) is such a value, then Eq. (2.50) gives \(z= \frac{p_{3} n_{2}}{p_{3} m- n_{2}}\). Thus the number of integer values of z is also finite. □

Following a similar procedure, we can also establish the following result.

Theorem 2.3

The Diophantine equation

$$ \frac{1}{x_{1}} + \frac{1}{x_{2}} + \frac{1}{x_{3}} +\cdots+ \frac{1}{ x_{n}} = \frac{p}{q}, $$
(2.51)

where \(p, q >1\) are integers, has only a finite number of solutions in the positive integers \(x_{1}, x_{2},\ldots, x_{n}\).

3 Conclusion

In this paper, we explicitly find the solutions in positive integers \(w, x, y\), and z of the title equation. Applying an analogue procedure, we prove that the Diophantine equation

$$\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{m}{n}, $$

where \(m, n>1\) are integers, has only a finite number of solutions in the positive integers \(w, x, y\), and z. We finally claim that the same holds for Eq. (2.51).