1 Introduction

Let \(u:(M^{m},g)\rightarrow (N^{n},h)\) be a smooth map between Riemannian manifolds \((M^{m},g)\) and \((N^{n},h)\). Recently, Kawai and Nakauchi [1] introduced a functional related to the pullback metric \(u^{*}h\) as follows:

$$\begin{aligned} \Phi (u)=\frac{1}{4} \int_{M} \bigl\Vert u^{*}h \bigr\Vert ^{2}\,dv_{g}, \end{aligned}$$
(1)

(see [24]), where \(u^{*}h\) is the symmetric 2-tensor defined by

$$\begin{aligned} \bigl(u^{*}h \bigr) (X,Y)=h \bigl(du(X),du(Y) \bigr) \end{aligned}$$

for any vector fields X, Y on M and \(\Vert u^{*}h \Vert \) is given by

$$\begin{aligned} \bigl\Vert u^{*}h \bigr\Vert ^{2}=\sum _{i,j=1}^{m} \bigl[h \bigl(du(e_{i}),du(e_{j}) \bigr) \bigr]^{2}, \end{aligned}$$

with respect to a local orthonormal frame \((e_{1},\ldots ,e_{m})\) on \((M,g)\). The map u is stationary for Φ if it is a critical point of \(\Phi (u)\) with respect to any compact supported variation of u, and u is stable if the second variation for the functional \(\Phi (u)\) is nonnegative. They showed the nonexistence of a nonconstant stable stationary map for Φ, either from \(S^{m}\) (\(m\geq 5\)) to any manifold, or from any compact Riemannian manifold to \(S^{n}\) (\(n\geq 5\)). In this paper, for a smooth function \(F:[0,\infty )\rightarrow [0,\infty )\) such that \(F(0)=0\) and \(F'(t)>0\) on \(t\in (0,\infty )\), we are concerned with the instability of F-stationary maps which is the generalization of a stationary map for Φ introduced by Asserda in [4]. In [4], they obtained some monotonicity formulas for F-stationary maps via the coarea formula and the comparison theorem. Also, by using monotonicity formulas, they got some Liouville type results for these maps.

The authors in [5] obtained the first and second variation formula for F-stationary maps. By using the second variation formula, they proved that every stable F-stationary map from \(S^{m}(1)\) to any Riemannian manifold is constant if

$$\begin{aligned} \int_{S^{m}} \bigl\Vert u^{*}h \bigr\Vert ^{2} \biggl\{ F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\Vert u^{*}h \bigr\Vert ^{2}+(4-m)F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggr\} \,dv_{g}< 0, \end{aligned}$$
(2)

or every F-stationary map from any compact Riemannian manifold \(N^{n}\) to \(S^{m}\) is constant if

$$\begin{aligned} \int_{N^{n}} \bigl\Vert u^{*}h \bigr\Vert ^{2} \biggl\{ F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\Vert u^{*}h \bigr\Vert ^{2}+(4-m)F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggr\} \,dv_{g}< 0. \end{aligned}$$
(3)

In this paper, we obtain the results on the instability of F-stationary maps which are from or into the compact convex hypersurfaces in the Euclidean space.

2 Preliminaries

Let \(F:[0,\infty )\rightarrow [0,\infty )\) be a \(C^{2}\)-function such that \(F(0)=0\) and \(F'(t)>0\) on \(t\in (0,\infty )\). For a smooth map \(u:(M,g)\rightarrow (N,h)\) between compact Riemannian manifolds \((M,g)\) and \((N,h)\) with Riemannian metrics g and h, respectively, following Ara [6] for an F-harmonic map (also see [710]), Asserda in [4] gave the following definition.

Definition 2.1

We call u an F-stationary map for \(\Phi_{F}\) if

$$ \frac{d}{dt}\Phi_{F}(u_{t})|_{t=0}=0 $$

for any compactly supported variation \(u_{t}:M\rightarrow N\) with \(u_{0}=u\), where

$$ \Phi_{F}(u)= \int_{M^{m}}F \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\,dv_{g}. $$

Let ∇ and N∇ always denote the Levi-Civita connections of M and N, respectively. Let ∇̃ be the induced connection on \(u^{-1}TN\) defined by \(\widetilde{\nabla } _{X}W=^{N}\nabla_{du(X)}W\), where X is a tangent vector of M and W is a section of \(u^{-1}TN\). We choose a local orthonormal frame field \(\{e_{i}\}\) on M. We define the F-tension field \(\tau_{\Phi_{F}}(u)\) of u by

$$\begin{aligned} \tau_{\Phi_{F}}(u) =&-\delta \biggl(F' \biggl( \frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sigma_{u} \biggr) \\ =&F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\operatorname{div}_{g}( \sigma_{u})+\sigma_{u} \biggl(\operatorname{grad} \biggl(F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggr) \biggr), \end{aligned}$$
(4)

where \(\sigma_{u}=\sum_{j}h(du(\cdot ),du(e_{j}))du(e_{j})\), which was defined in [1].

We need the following second variation formula for F-stationary maps (cf. [5]). Let \(u:(M,g)\rightarrow (N,h)\) be an F-stationary map. Let \(u_{s,t}:M\rightarrow N\) (\(-\varepsilon < s,t< \varepsilon \)) be a compactly supported two-parameter variation such that \(u_{0,0}=u\), and set \(V=\frac{\partial }{\partial t}u_{s,t}|_{s,t=0}\), \(W=\frac{\partial }{ \partial s}u_{s,t}|_{s,t=0}\). Then

$$\begin{aligned} \frac{\partial^{2}}{\partial s\partial t}\Phi_{F}(u_{s,t})|_{s,t=0} &= \int_{M}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\langle \widetilde{\nabla }V,\sigma_{u}\rangle \langle \widetilde{\nabla }W,\sigma_{u}\rangle \,dv_{g} \\ &\quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j=1}^{m}h( \widetilde{\nabla }_{e_{i}}V,\widetilde{\nabla }_{e_{j}}W)h \bigl(du(e_{i}),du(e _{j}) \bigr)\,dv_{g} \\ &\quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j=1}^{m}h \bigl( \widetilde{\nabla }_{e_{i}}V,du(e_{j}) \bigr)h \bigl(\widetilde{\nabla }_{e_{i}}W,du(e _{j}) \bigr)\,dv_{g} \\ &\quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j=1}^{m}h \bigl( \widetilde{\nabla }_{e_{i}}V,du(e_{j}) \bigr)h \bigl(du(e_{i}), \widetilde{\nabla }_{e_{j}}W \bigr)\,dv_{g} \\ &\quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)h \bigl(R^{N} \bigl(V,du(e_{i}) \bigr)W,du(e_{j}) \bigr)h \bigl(du(e _{i}),du(e_{j}) \bigr) \,dv_{g}, \end{aligned}$$

where \(\langle \cdot, \cdot \rangle \) is the inner product on \(T^{*}M\otimes u^{-1}TN\) and \(R^{N}\) is the curvature tensor of N.

We put

$$\begin{aligned} I(V,W)=\frac{\partial^{2}}{\partial s\partial t}\Phi_{F}(u_{s,t})|_{s,t=0}. \end{aligned}$$
(5)

An F-stationary map u is called stable if \(I(V,V)\geq 0\) for any compactly supported vector field V along u.

3 F-stationary maps from compact convex hypersurfaces

In this section, we obtain the following result.

Theorem 3.1

Let \(M\subset R^{m+1}\) be a compact convex hypersurface. Assume that the principal curvatures \(\lambda_{i}\) of \(M^{m}\) satisfy \(0<\lambda_{1} \leq \cdots \leq \lambda_{m}\) and \(3\lambda_{m}< \sum_{i=1}^{m-1} \lambda_{i}\). Then every nonconstant F-stationary map from M to any compact Riemannian manifold N is unstable if there exists a constant \(c_{F}=\operatorname{inf}\{c\geq 0| F'(t)/t^{c}\ \textit{is nonincreasing}\}\) such that

$$\begin{aligned} c_{F}< \frac{1}{4\lambda^{2}_{m}} \min_{1\leq i\leq m} \Biggl\{ \lambda_{i} \Biggl( \sum_{k=1}^{m} \lambda_{k}-2\lambda_{i}-2\lambda_{m} \Biggr) \Biggr\} \end{aligned}$$
(6)

or when \(F''(t)=F'(t)\) (for example, \(F(t)=\exp (t)\))

$$\begin{aligned} \bigl\Vert u^{*}h \bigr\Vert ^{2}< \frac{1}{\lambda_{m}^{2}} \min_{1\leq i\leq m} \Biggl\{ \lambda _{i} \Biggl(\sum_{k=1}^{m}\lambda_{k}-2 \lambda_{i}-2\lambda_{m} \Biggr) \Biggr\} . \end{aligned}$$
(7)

Proof

In order to prove the instability of \(u:M^{m}\rightarrow N\), we need to consider some special variational vector fields along u. To do this, we choose an orthonormal field \(\{e_{i},e_{m+1}\}\), \(i=1,\ldots ,m\), of \(R^{m+1}\) such that \(\{e_{i}\}\) are tangent to \(M^{m}\subset R^{m+1}\), \(e_{m+1}\) is normal to \(M^{m}\) and \(\nabla_{e_{i}}e_{j}|_{P}=0\). Meanwhile, we take a fixed orthonormal basis \(E_{A}\), \(A=1,\ldots ,m+1\), of \(R^{m+1}\) and set

$$\begin{aligned} V_{A}=\sum_{i=1}^{m}v_{A}^{i}e_{i}, \quad v_{A}^{i}=\langle E_{A},e_{i} \rangle, v_{A}^{m+1}=\langle E_{A},e_{m+1} \rangle, \end{aligned}$$
(8)

where \(\langle \cdot, \cdot \rangle \) denotes the canonical Euclidean inner product. Then \(du(V_{A})\in \Gamma (u^{-1}TN)\) and

$$\begin{aligned}& \sum_{A}v_{A}^{i}v_{A}^{j} = \sum_{A}\langle E_{A},e_{i} \rangle \langle E_{A},e_{j}\rangle= \delta_{ij}, \end{aligned}$$
(9)
$$\begin{aligned}& \nabla_{e_{i}}V_{A}=v_{A}^{m+1}B_{ij}e_{j}, \end{aligned}$$
(10)
$$\begin{aligned}& \nabla_{e_{i}}(\nabla_{e_{i}}V_{A}) = -v_{A}^{k}B_{ik}B_{ij}e_{j}+v _{A}^{m+1}(\nabla_{e_{i}}h_{ij})e_{j}, \end{aligned}$$
(11)
$$\begin{aligned}& \widetilde{\nabla }_{e_{i}} \bigl(du(\nabla_{e_{i}}V_{A}) \bigr) = -v_{A}^{k}B _{ik}B_{ij} du(e_{j}) \\& \hphantom{\widetilde{\nabla }_{e_{i}} (du(\nabla_{e_{i}}V_{A}) )= }{} +v_{A}^{m+1}(\nabla_{e_{i}}B_{ij}) du(e_{j})+v_{A}^{m+1}B_{ij} \widetilde{ \nabla }_{e_{i}}du(e_{j}), \end{aligned}$$
(12)

where \(B_{ij}\) denotes the components of the second fundamental form of \(M^{m}\) in \(R^{m+1}\). Suppose that \(u:M^{m}\rightarrow N\) is a nonconstant F-stationary map. Then the condition \(\tau_{F}(u)=- \delta (F'(\frac{\Vert u^{*}h \Vert ^{2}}{4})\sigma_{u})=0\) implies that

$$\begin{aligned}& \sum_{A} \int_{M^{m}}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\langle (\triangle du) (V _{A}),\sigma_{u}(V_{A}) \bigr\rangle \, dv_{g} \\& \quad = \sum_{A} \int_{M^{m}}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)v_{A}^{i}v^{j}_{A} \bigl\langle ( \triangle du) (e_{i}),\sigma_{u}(e_{j}) \bigr\rangle \, dv_{g} \\& \quad = \sum_{i} \int_{M^{m}}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\langle (\triangle du) (e _{i}),\sigma_{u}(e_{i}) \bigr\rangle \, dv_{g} \\& \quad = \int_{M^{m}} F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\langle ( \triangle du),\sigma _{u} \bigr\rangle \,dv_{g} \\& \quad = \int_{M^{m}} \biggl\langle \delta du,\delta \biggl(F' \biggl( \frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sigma _{u} \biggr) \biggr\rangle \,dv_{g} =0. \end{aligned}$$
(13)

It follows from the Weitzenböck formula that

$$\begin{aligned} -\sum_{k=1}^{m}R^{N} \bigl(du(X), du(e_{k}) \bigr)du(e_{k})+du \bigl( \operatorname{Ric}^{M}(X) \bigr)=\triangle du(X)+\widetilde{\nabla }^{2}du(X), \end{aligned}$$
(14)

where X is any smooth vector field on \(M^{m}\). With respect to the variational vector field \(du(V_{A})\) along u, it follows from (13) and (14) that

$$\begin{aligned}& \sum_{A}I \bigl(du(V_{A}),du(V_{A}) \bigr) \\& \quad = \int_{M}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum_{A} \bigl\langle \widetilde{\nabla } du(V_{A}),\sigma_{u}\bigr\rangle ^{2} \,dv_{g} \\& \quad \quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j,A}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),\widetilde{\nabla }_{e_{j}}du(V _{A}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\& \quad \quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j,A}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),du(e_{j}) \bigr)h \bigl(\widetilde{\nabla } _{e_{i}}du(V_{A}),du(e_{j}) \bigr) \,dv_{g} \\& \quad \quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j,A}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),du(e_{j}) \bigr)h \bigl(du(e_{i}), \widetilde{\nabla }_{e_{j}}du(V_{A}) \bigr)\,dv_{g} \\& \quad \quad {}- \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{A}h \bigl(du \bigl(\operatorname{Ric}^{M^{m}}(V_{A}) \bigr), \sigma_{u}(V_{A}) \bigr)\,dv_{g} \\& \quad \quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{A}h \bigl( \bigl(\widetilde{\nabla }^{2} du \bigr) (V_{A}),\sigma_{u}(V_{A}) \bigr) \,dv_{g}. \end{aligned}$$
(15)

For any fixed point \(P\in M\), choose \(\{e_{i}\}\) such that \(\nabla _{e_{i}}e_{j}|_{P}=0\). We have

$$\begin{aligned} \widetilde{\nabla }^{2}du(V_{A})= \widetilde{\nabla }_{e_{i}} \widetilde{\nabla }_{e_{i}} \bigl(du(V_{A}) \bigr)-2\widetilde{\nabla }_{e_{i}} \bigl(du( \nabla_{e_{i}}V_{A}) \bigr) +du(\nabla_{e_{i}} \nabla_{e_{i}}V_{A}) \end{aligned}$$
(16)

and

$$\begin{aligned} & \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{A,i}h \bigl(\widetilde{\nabla } _{e_{i}} \widetilde{\nabla }_{e_{i}}du(V_{A}),\sigma_{u}(V_{A}) \bigr)\,dv_{g} \\ &\quad =- \int_{M}\sum_{A,i}h \biggl( \widetilde{\nabla }_{e_{i}}du(V_{A}), \widetilde{\nabla }_{e_{i}} \biggl[F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \sigma_{u}(V _{A}) \biggr] \biggr)\,dv_{g} \\ &\quad =- \int_{M}\sum_{A,i}h \biggl( \widetilde{\nabla }_{e_{i}}du(V_{A}), \widetilde{\nabla }_{e_{i}} \biggl[F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggr] \sigma_{u}(V _{A}) \biggr)\,dv_{g} \\ &\quad \quad {}- \int_{M}\sum_{A,i}h \biggl( \widetilde{\nabla }_{e_{i}}du(V_{A}),F' \biggl( \frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\widetilde{\nabla }_{e_{i}}\sigma_{u}(V_{A}) \biggr)\,dv_{g} \\ &\quad =- \int_{M}\sum_{A,i}h \biggl( \widetilde{\nabla }_{e_{i}}du(V_{A}), \widetilde{\nabla }_{e_{i}} \biggl[F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggr] \sigma_{u}(V _{A}) \biggr)\,dv_{g} \\ &\quad \quad {}- \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{A,i,j}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),\widetilde{\nabla }_{e_{i}}du(e _{j}) \bigr)h \bigl(du(V_{A}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad \quad {}- \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{A,i,j}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),du(e_{j}) \bigr)h \bigl(\widetilde{\nabla } _{e_{i}}du(V_{A}),du(e_{j}) \bigr) \,dv_{g} \\ &\quad \quad {}- \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{A,i,j}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),du(e_{j}) \bigr)h \bigl(du(V_{A}), \widetilde{\nabla }_{e_{i}}du(e_{j}) \bigr) \,dv_{g}. \end{aligned}$$
(17)

Substituting (16) and (17) into (15), we have

$$\begin{aligned} &\sum_{A}I \bigl(du(V_{A}),du(V_{A}) \bigr) \\ &\quad = \int_{M} \biggl\{ F'' \biggl( \frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum_{A} \bigl\langle \widetilde{\nabla }du(V_{A}),\sigma _{u} \bigr\rangle ^{2} \\ &\quad \quad {}-h \biggl(\widetilde{\nabla }_{e_{i}} du(V_{A}),\widetilde{ \nabla }_{e_{i}} \biggl[F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggr]\sigma_{u}(V_{A}) \biggr) \biggr\} \,dv_{g} \\ &\quad \quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)h \bigl(-2\widetilde{\nabla }_{e_{i}} \bigl(du( \nabla_{e_{i}}V_{A}) \bigr) \\ &\quad \quad {}+du(\nabla_{e_{i}}\nabla_{e_{i}}V_{A})-du \bigl(\operatorname{Ric}^{M^{m}}(V_{A}) \bigr),\sigma _{u}(V_{A}) \bigr)\,dv_{g} \\ &\quad \quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j,A}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),\widetilde{\nabla }_{e_{j}}du(V _{A}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad \quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j,A}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),du(e_{j}) \bigr)h \bigl(du(e_{i}), \widetilde{\nabla }_{e_{j}}du(V_{A}) \bigr)\,dv_{g} \\ &\quad \quad {}- \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{A,i,j}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),\widetilde{\nabla }_{e_{i}}du(e _{j}) \bigr)h \bigl(du(V_{A}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad \quad {}- \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{A,i,j}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),du(e_{j}) \bigr)h \bigl(du(V_{A}), \widetilde{\nabla }_{e_{i}}du(e_{j}) \bigr) \,dv_{g}. \end{aligned}$$
(18)

In the following, we shall estimate each term in (18). Because trace is independent of the choice of orthonormal basis, we can take pointwisely \(\{e_{i},e_{m+1}\}\) such that \(B_{ij}=\lambda_{i}\delta _{ij}\).

A straightforward computation shows

$$\begin{aligned} &\sum_{A}h \biggl(\widetilde{ \nabla }_{e_{i}}du(V_{A}),\widetilde{\nabla } _{e_{i}} \biggl[F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggr] \sigma_{u}(V_{A}) \biggr) \\ &\quad =\sum_{A}F'' \biggl( \frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\widetilde{\nabla }_{e_{i}} \biggl( \frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)h \bigl(v_{A}^{m+1}B_{ik} du(e_{k}) +v_{A}^{k} \widetilde{\nabla }_{e_{i}} du(e_{k}),v_{A}^{l} \sigma_{u}(e_{l}) \bigr) \\ &\quad =F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \widetilde{\nabla }_{e_{i}} \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)h \bigl( \widetilde{\nabla }_{e_{i}}du(e_{k}),\sigma_{u}(e _{k}) \bigr) \\ &\quad =F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \langle \widetilde{ \nabla }_{e_{i}}du,\sigma _{u} \rangle^{2} \end{aligned}$$
(19)

and

$$\begin{aligned} &\sum_{A}F'' \biggl( \frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\langle \widetilde{\nabla } du(V_{A}),\sigma_{u} \bigr\rangle ^{2} \\ &\quad =\sum_{A}F''\biggl( \frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\langle v_{A}^{m+1}B_{ik} du(e_{k})+v _{A}^{k}\widetilde{\nabla}_{e_{i}}du(e_{k}),\sigma_{u}(e_{i} )\bigr\rangle ^{2} \\ &\quad =\sum_{A}F'' \biggl( \frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\{ B_{ik}B_{jl}h \bigl(du(e_{k}), \sigma_{u}(e_{i}) \bigr)h \bigl(du(e_{l}),\sigma_{u}(e_{j}) \bigr) \\ &\quad \quad {}+h \bigl(\widetilde{\nabla }_{e_{i}}du(e_{k}), \sigma_{u}(e_{i}) \bigr)h \bigl( \widetilde{\nabla }_{e_{j}}du(e_{k}),\sigma_{u}(e_{j}) \bigr) \bigr\} \\ &\quad =\sum_{A}F'' \biggl( \frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\{ \lambda_{i} \lambda_{j} h \bigl(du(e _{i}),\sigma_{u}(e_{i}) \bigr)h \bigl(du(e_{j}),\sigma_{u}(e_{j}) \bigr) +\langle \widetilde{\nabla }_{e_{i}}du,\sigma_{u} \rangle^{2} \bigr\} . \end{aligned}$$
(20)

Then it follows from (19) and (20) that

$$\begin{aligned} & \int_{M} \biggl\{ F'' \biggl( \frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum_{A} \bigl\langle \widetilde{\nabla }du(V _{A}),\sigma_{u} \bigr\rangle ^{2} \\ &\quad \quad {}-h \biggl(\widetilde{\nabla }_{e_{i}} du(V_{A}),\widetilde{\nabla }_{e_{i}} \biggl[F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggr]\sigma_{u}(V_{A}) \biggr) \biggr\} \,dv_{g} \\ &= \int_{M}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\lambda_{i}\lambda_{j} h \bigl(du(e _{i}), \sigma_{u}(e_{i}) \bigr)h \bigl(du(e_{j}), \sigma_{u}(e_{j}) \bigr) \,dv_{g}. \end{aligned}$$
(21)

From the Gauss equation it follows that

$$\begin{aligned} \operatorname{Ric}^{M}(V_{A})=v_{A}^{i}(B_{kk}B_{ij}-B_{ik}B_{jk})e_{j}. \end{aligned}$$
(22)

Using (10), (11),(12) and (22), we have

$$\begin{aligned} & \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)h \bigl(-2\widetilde{\nabla }_{e_{i}} \bigl(du( \nabla_{e_{i}}V_{A}) \bigr) \\ &\quad \quad {}+du(\nabla_{e_{i}}\nabla_{e_{i}}V_{A})-du \bigl( \operatorname{Ric}^{M^{m}}(V_{A}) \bigr),\sigma _{u}(V_{A}) \bigr)\,dv_{g} \\ &\quad = \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\{ \bigl[h \bigl(2v_{A}^{k}B_{ik}B_{ij} du(e _{j})-v_{A}^{m+1}\nabla_{e_{i}}(B_{ij}) du(e_{j}) \\ &\quad \quad {}-v_{A}^{m+1}B_{ij}\widetilde{\nabla }_{e_{i}}du(e_{j}),v_{A}^{l} \sigma_{u}(e_{l}) \bigr) \bigr] \\ &\quad \quad {}+h \bigl(-v_{A}^{k}B_{ik}B_{ij} du(e_{j})+v_{A}^{m+1}(\nabla_{e_{i}}B_{ij}) du(e _{j}),v_{A}^{l}\sigma_{u}(e_{l}) \bigr) \\ &\quad \quad {}+h \bigl(v_{A}^{k}B_{ik}B_{ij} du(e_{j})-v^{i}_{A}B_{kk}B_{ij} du(e_{j}),v _{A}^{l}\sigma_{u}(e_{l}) \bigr) \bigr\} \,dv_{g} \\ &\quad =\int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\{ h\bigl(2v_{A}^{k}B_{ik}B_{ij}du(e_{j})-v^{i}_{A}B_{kk}B_{ij}du(e_{j}),v_{A}^{l}\sigma_{u}(e_{l})\bigr)\bigr\} \,dv _{g} \\ &\quad =\int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum_{i} \biggl\{ \biggl[2\lambda_{i}-\biggl( \sum_{k}\lambda_{k} \biggr) \biggr] \lambda_{i}h \bigl(du(e_{i}),\sigma_{u}(e_{i}) \bigr) \biggr\} \,dv_{g}. \end{aligned}$$
(23)

A straightforward computation shows

$$\begin{aligned} & \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j,A}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),\widetilde{\nabla }_{e_{j}}du(V _{A}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad = \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)h \bigl(v_{A}^{m+1}B_{ik}du(e_{k})+v _{A}^{k}\widetilde{\nabla }_{e_{i}} du(e_{k}), \\ &\quad \quad v_{A}^{m+1}B_{jl}du(e_{l})+v_{A}^{l} \widetilde{\nabla }_{e_{j}}du(e _{l}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad = \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\{ B_{ik}B_{jl}h \bigl(du(e_{k}),du(e _{l}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr) \\ &\quad \quad {}+h \bigl(\widetilde{\nabla }_{e_{i}}du(e_{k}), \widetilde{ \nabla }_{e_{j}}du(e _{k}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr) \bigr\} \,dv_{g} \\ &\quad = \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\{ \lambda_{i}\lambda_{j}h \bigl(du(e _{i}),du(e_{j}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr) \\ &\quad \quad {}+h \bigl(\widetilde{\nabla }_{e_{i}}du(e_{k}), \widetilde{ \nabla }_{e_{j}}du(e _{k}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr) \bigr\} \,dv_{g} \end{aligned}$$
(24)

and

$$\begin{aligned} & \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j,A}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),du(e_{j}) \bigr)h \bigl(du(e_{i}), \widetilde{\nabla }_{e_{j}}du(V_{A}) \bigr)\,dv_{g} \\ &\quad = \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\{ h \bigl(v_{A}^{m+1}B_{ik}du(e_{k})+v _{A}^{k}\widetilde{\nabla }_{e_{i}} du(e_{k}),du(e_{j}) \bigr) \\ &\quad \quad {}\times h \bigl(du(e_{i}),v_{A}^{m+1}B_{jk} du(e_{k})+v_{A}^{k}\widetilde{\nabla } _{e_{j}}du(e_{k}) \bigr) \bigr\} \,dv_{g} \\ &\quad = \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\{ \lambda_{i}\lambda_{j}h \bigl(du(e _{i}),du(e_{j}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr) \\ &\quad \quad {}+h \bigl(\widetilde{\nabla }_{e_{i}}du(e_{k}),du(e_{j}) \bigr)h \bigl( \widetilde{\nabla }_{e_{j}}du(e_{k}),du(e_{i}) \bigr) \bigr\} \,dv_{g} \end{aligned}$$
(25)

and

$$\begin{aligned} & \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{A,i,j}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),\widetilde{\nabla }_{e_{i}}du(e _{j}) \bigr)h \bigl(du(V_{A}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad = \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\{ h \bigl(v_{A}^{m+1}B_{ik}du(e_{k})+v _{A}^{k}\widetilde{\nabla }_{e_{i}} du(e_{k}), \widetilde{\nabla }_{e _{i}}du(e_{j}) \bigr) \\ &\quad \quad {}\times h \bigl(v_{A}^{l} du(e_{l}),du(e_{j}) \bigr) \bigr\} \,dv_{g} \\ &\quad = \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)h \bigl( \widetilde{\nabla }_{e_{i}}du(e _{k}), \widetilde{ \nabla }_{e_{i}}du(e_{j}) \bigr)h \bigl(du(e_{k}),du(e_{j}) \bigr)\,dv _{g} \end{aligned}$$
(26)

and

$$\begin{aligned} & \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{A,i,j}h \bigl( \widetilde{\nabla }_{e_{i}} du(V_{A}),du(e_{j}) \bigr)h \bigl(du(V_{A}), \widetilde{\nabla }_{e_{i}}du(e_{j}) \bigr)\,dv_{g} \\ &\quad = \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\{ h \bigl(v_{A}^{m+1}B_{ik}du(e_{k})+v _{A}^{k}\widetilde{\nabla }_{e_{i}} du(e_{k}),du(e_{j}) \bigr) \\ &\quad \quad {}\times h \bigl(v_{A}^{l} du(e_{l}), \widetilde{\nabla }_{e_{i}}du(e_{j}) \bigr) \bigr\} \,dv _{g} \\ &\quad = \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)h \bigl( \widetilde{\nabla }_{e_{i}}du(e _{k}),du(e_{j}) \bigr)h \bigl(du(e_{k}),\widetilde{\nabla }_{e_{i}} du(e_{j}) \bigr)\,dv _{g}. \end{aligned}$$
(27)

From (18), (21), (23), (24), (25), (26), (27) and \(\widetilde{\nabla }_{e_{i}}du(e_{j})=\widetilde{\nabla }_{e_{j}}du(e _{i})\), we obtain

$$\begin{aligned} &\sum_{A}I \bigl(du(V_{A}),du(V_{A}) \bigr) \\ &\quad = \int_{M}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\lambda_{i}\lambda_{j} h \bigl(du(e _{i}), \sigma_{u}(e_{i}) \bigr)h \bigl(du(e_{j}), \sigma_{u}(e_{j}) \bigr) \,dv_{g} \\ &\quad \quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i} \biggl\{ \biggl[2\lambda_{i}- \biggl( \sum_{k}\lambda_{k} \biggr) \biggr] \lambda_{i}h \bigl(du(e_{i}),\sigma_{u}(e_{i}) \bigr) \biggr\} \,dv_{g} \\ &\quad \quad {}+2 \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{i}\lambda_{j}h \bigl(du(e _{i}),du(e_{j}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad \leq \int_{M}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\lambda_{i}\lambda_{j} h \bigl(du(e _{i}), \sigma_{u}(e_{i}) \bigr)h \bigl(du(e_{j}), \sigma_{u}(e_{j}) \bigr) \,dv_{g} \\ &\quad \quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i} \biggl\{ \biggl[2\lambda_{i}- \biggl( \sum_{k}\lambda_{k} \biggr) \biggr] \lambda_{i}h \bigl(du(e_{i}),\sigma_{u}(e_{i}) \bigr) \biggr\} \,dv_{g} \\ &\quad \quad {}+2 \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{i}\lambda_{m}h \bigl(du(e _{i}), \sigma_{u}(e_{i}) \bigr)\,dv_{g} \\ &\quad = \int_{M}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\lambda_{i}\lambda_{j} h \bigl(du(e _{i}), \sigma_{u}(e_{i}) \bigr)h \bigl(du(e_{j}), \sigma_{u}(e_{j}) \bigr) \,dv_{g} \\ &\quad \quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i} \biggl\{ \biggl[2\lambda_{i}+2 \lambda_{m}- \biggl(\sum_{k} \lambda_{k} \biggr) \biggr]\lambda_{i}h \bigl(du(e_{i}), \sigma_{u}(e _{i}) \bigr) \biggr\} \,dv_{g}. \end{aligned}$$
(28)

If \(F''(t)=F'(t)\), then (28) leads to the following inequality:

$$\begin{aligned} &\sum_{A}I \bigl(du(V_{A}),du(V_{A}) \bigr) \\ &\quad \leq \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{m}^{2} \bigl\Vert u^{*}h \bigr\Vert ^{4}\,dv _{g} \\ &\quad \quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\max _{1\leq i\leq m} \biggl\{ \biggl[2\lambda _{i}+2 \lambda_{m}- \biggl(\sum_{k} \lambda_{k} \biggr) \biggr]\lambda_{i} \biggr\} \bigl\Vert u^{*}h \bigr\Vert ^{2}\,dv _{g} \\ &\quad = \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\Vert u^{*}h \bigr\Vert ^{2} \biggl\{ \lambda_{m} ^{2} \bigl\Vert u^{*}h \bigr\Vert ^{2} \\ &\quad \quad {}+\max_{1\leq i\leq m} \biggl\{ \biggl[2 \lambda_{i}+2 \lambda_{m}- \biggl( \sum _{k} \lambda_{k} \biggr) \biggr] \lambda_{i} \biggr\} \biggr\} \,dv_{g}. \end{aligned}$$
(29)

If there exists a constant \(c_{F}\) such that \(\frac{F'(t)}{t^{c_{F}}}\) is nonincreasing, it follows that \(F''(t)t\leq c_{F}F'(t)\) on \(t\in (0,\infty )\), thus (28) implies

$$\begin{aligned} &\sum_{A}I \bigl(du(V_{A}),du(V_{A}) \bigr) \\ &\quad \leq \int_{M}4c_{F}F' \biggl( \frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\lambda_{m}^{2} \bigl\Vert u^{*}h \bigr\Vert ^{2}\,dv_{g} \\ &\quad \quad {}+ \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\max _{1\leq i\leq m} \biggl\{ \biggl[2\lambda _{i}+2 \lambda_{m}- \biggl(\sum_{k} \lambda_{k} \biggr) \biggr]\lambda_{i} \biggr\} \bigl\Vert u^{*}h \bigr\Vert ^{2}\,dv _{g} \\ &\quad = \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\Vert u^{*}h \bigr\Vert ^{2} \biggl\{ 4c_{F} \lambda _{m}^{2} \\ &\quad \quad {}+\max_{1\leq i\leq m} \biggl\{ \biggl[2 \lambda_{i}+2\lambda_{m}- \biggl(\sum _{k} \lambda_{k} \biggr) \biggr] \lambda_{i} \biggr\} \biggr\} \,dv_{g}. \end{aligned}$$
(30)

If u is nonconstant and (6) or (7) holds, we have

$$\begin{aligned} \sum_{A}I \bigl(du(V_{A}),du(V_{A}) \bigr)< 0 \end{aligned}$$
(31)

and u is unstable. □

Corollary 3.2

Let \(u:S^{m}\rightarrow N\) be a nonconstant F-stationary map and \(m>4\). If \(c_{F}<\frac{m}{4}-1\) or \(\Vert u^{*}h \Vert ^{2}< m-4\), then u is unstable.

4 F-stationary maps into compact convex hypersurfaces

In this section, we obtain the following result.

Theorem 4.1

With the same assumption on \(M^{m}\) as in Theorem 3.1, every nonconstant F-stationary map from any compact Riemannian manifold N to \(M^{m}\) is unstable if (6) or (7) holds.

Proof

In order to prove the instability of \(u:N^{n}\rightarrow M^{m}\), we need to consider some special variational vector fields along u. To do this, we choose an orthonormal field \(\{\epsilon_{\alpha },\epsilon _{m+1}\}\), \(\alpha =1,\ldots ,m\), of \(R^{m+1}\) such that \(\{ \epsilon_{\alpha }\}\) are tangent to \(M^{m}\subset R^{m+1}\), \(\epsilon_{m+1}\) is normal to \(M^{m}\), \(^{M^{m}} \nabla_{\epsilon_{\alpha }}\epsilon_{\beta }|_{P}=0\) and \(B_{\alpha \beta }=\lambda_{\alpha }\delta_{\alpha \beta }\), where \(B_{\alpha \beta }\) denotes the components of the second fundamental form of \(M^{m}\) in \(R^{m+1}\). Meanwhile, take a fixed orthonormal basis \(E_{A}\), \(A=1,\ldots ,m+1\), of \(R^{m+1}\) and set

$$\begin{aligned} V_{A}=\sum_{\alpha =1}^{m}v_{A}^{\alpha } \epsilon_{\alpha },\quad v_{A}^{\alpha }=\langle E_{A},\epsilon_{\alpha }\rangle, v_{A}^{m+1}= \langle E_{A},\epsilon_{m+1}\rangle, \end{aligned}$$
(32)

where \(\langle \cdot, \cdot \rangle \) denotes the canonical Euclidean inner product. We shall consider the second variation

$$\begin{aligned} \sum_{A}I(V_{A},V_{A}) =& \int_{N}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \langle \widetilde{\nabla }V_{A},\sigma_{u}\rangle \langle \widetilde{\nabla }V_{A},\sigma _{u}\rangle \,dv_{g} \\ & {}+ \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j=1}^{m}h( \widetilde{\nabla }_{e_{i}}V_{A},\widetilde{\nabla }_{e_{j}}V_{A})h \bigl(du(e _{i}),du(e_{j}) \bigr)\,dv_{g} \\ & {}+ \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j=1}^{m}h \bigl( \widetilde{\nabla }_{e_{i}}V_{A},du(e_{j}) \bigr)h \bigl(\widetilde{ \nabla }_{e _{i}}V_{A},du(e_{j}) \bigr) \,dv_{g} \\ & {}+ \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j=1}^{m}h \bigl( \widetilde{\nabla }_{e_{i}}V_{A},du(e_{j}) \bigr)h \bigl(du(e_{i}), \widetilde{\nabla }_{e_{j}}V_{A} \bigr)\,dv_{g} \\ &{}+ \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i}h \bigl(R^{M^{m}} \bigl(V_{A},du(e _{i}) \bigr)V_{A},\sigma_{u}(e_{i}) \bigr)\,dv_{g}, \end{aligned}$$
(33)

where \(\{e_{1},\ldots ,e_{n}\}\) is the local orthonormal frame of \(N^{n}\).

Firstly, we compute the first term of (33)

$$\begin{aligned} &\sum_{A} \int_{N}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \langle \widetilde{\nabla }V _{A},\sigma_{u}\rangle \langle \widetilde{ \nabla }V_{A},\sigma_{u}\rangle\, dv_{g} \\ &\quad = \int_{N}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggl[\sum_{i}h \bigl( \widetilde{\nabla }_{e_{i}}V_{A},\sigma_{u}(e_{i}) \bigr) \biggr]^{2}\,dv_{g} \\ &\quad = \int_{N}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggl[\sum_{i}h \bigl({}^{M^{m}} \nabla_{du(e_{i})}V_{A},\sigma_{u}(e_{i}) \bigr) \biggr]^{2}\,dv_{g} \\ &\quad = \int_{N}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggl[\sum_{i}u_{i}^{\alpha }h \bigl({}^{M ^{m}}\nabla_{\epsilon_{\alpha }}V_{A}, \sigma_{u}(e_{i}) \bigr) \biggr]^{2} \,dv_{g} \\ &\quad = \int_{N}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggl[\sum_{i}v_{A}^{m+1}u_{i}^{ \alpha }B_{\alpha \beta } h \bigl(\epsilon_{\beta },\sigma_{u}(e_{i}) \bigr) \biggr]^{2}\,dv _{g} \\ &\quad = \int_{N}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggl[\sum_{i}v_{A}^{m+1}u_{i}^{ \alpha } \lambda_{\alpha }h \bigl(\epsilon_{\alpha },\sigma_{u}(e_{i}) \bigr) \biggr]^{2}\,dv _{g} \\ &\quad = \int_{N}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{\alpha }\lambda_{ \beta }h \bigl(u_{i}^{\alpha } \epsilon_{\alpha },\sigma_{u}(e_{i}) \bigr)h \bigl(u_{j} ^{\beta }\epsilon_{\beta }, \sigma_{u}(e_{j}) \bigr)\,dv_{g}. \end{aligned}$$
(34)

The second term of (33)

$$\begin{aligned} &\sum_{A} \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j=1}^{m}h( \widetilde{\nabla }_{e_{i}}V_{A},\widetilde{\nabla }_{e_{j}}V_{A})h \bigl(du(e _{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad =\int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert {}^{2}}{4} \biggr)h \bigl({}^{M^{m}}\nabla_{du(e_{i})}V _{A},{}^{M^{m}} \nabla_{du(e_{j})}V_{A} \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad = \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)u_{i}^{\alpha }u_{j}^{\beta }h \bigl({}^{M ^{m}}\nabla_{\epsilon_{\alpha }}V_{A},{}^{M^{m}} \nabla_{\epsilon_{ \beta }}V_{A} \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad = \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)u_{i}^{\alpha }u_{j}^{\beta }B _{\alpha \gamma }B_{\beta \delta }h(\epsilon_{\gamma },\epsilon_{ \delta })h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad = \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{\alpha }\lambda_{ \beta }h \bigl(u_{i}^{\alpha } \epsilon_{\alpha },u_{j}^{\beta }\epsilon_{ \beta } \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad = \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{\alpha }^{2} h \bigl(u_{i} ^{\alpha } \epsilon_{\alpha },du(e_{j}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g}. \end{aligned}$$
(35)

The third term of (33)

$$\begin{aligned} &\sum_{A} \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j=1}^{m}h \bigl( \widetilde{\nabla }_{e_{i}}V_{A},du(e_{j}) \bigr)h \bigl(\widetilde{ \nabla }_{e _{i}}V_{A},du(e_{j}) \bigr) \,dv_{g} \\ &\quad = \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{\alpha }\lambda_{ \beta }h \bigl(u_{i}^{\alpha } \epsilon_{\alpha },du(e_{j}) \bigr)h \bigl(u_{i}^{\beta } \epsilon_{\beta },du(e_{j}) \bigr)\,dv_{g}. \end{aligned}$$
(36)

The fourth term of (33)

$$\begin{aligned} &\sum_{A} \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i,j=1}^{m}h \bigl( \widetilde{\nabla }_{e_{i}}V_{A},du(e_{j}) \bigr)h \bigl(du(e_{i}), \widetilde{\nabla }_{e_{j}}V_{A} \bigr)\,dv_{g} \\ &\quad = \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{\alpha }\lambda_{ \beta }h \bigl(u_{i}^{\alpha } \epsilon_{\alpha },du(e_{j}) \bigr)h \bigl(du(e_{i}),u _{j}^{\beta }\epsilon_{\beta } \bigr)\,dv_{g}. \end{aligned}$$
(37)

The fifth term of (33)

$$\begin{aligned} &\sum_{A} \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)\sum _{i}h \bigl(R^{M^{m}} \bigl(V _{A},du(e_{i}) \bigr)V_{A},\sigma_{u}(e_{i}) \bigr)\,dv_{g} \\ &\quad = \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)v_{A}^{\alpha }v_{A}^{\beta }h \bigl(R ^{M^{m}} \bigl(\epsilon_{\alpha },du(e_{i}) \bigr) \epsilon_{\beta },\sigma_{u}(e _{i}) \bigr) \,dv_{g} \\ &\quad = \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)u_{i}^{\gamma }u_{j}^{\delta }h \bigl(R ^{M^{m}}(\epsilon_{\alpha },\epsilon_{\gamma }) \epsilon_{\alpha }, \epsilon_{\delta } \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad = \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)u_{i}^{\gamma }u_{j}^{\delta }[B _{\alpha \delta }B_{\gamma \alpha }-B_{\alpha \alpha }B_{\gamma \delta }]h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad = \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)u_{i}^{\alpha }u_{j}^{\alpha } \biggl[ \lambda_{\alpha }^{2}- \biggl(\sum_{\beta } \lambda_{\beta } \biggr) \lambda_{\alpha } \biggr]h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad = \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggl[ \lambda_{\alpha }^{2}- \biggl( \sum _{\beta } \lambda_{\beta } \biggr) \lambda_{\alpha } \biggr]h \bigl(u_{i}^{\alpha } \epsilon_{\alpha },u_{j}^{\gamma } \epsilon_{\gamma } \bigr)h \bigl(du(e_{i}),du(e _{j}) \bigr)\,dv_{g} \\ &\quad = \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggl[ \lambda_{\alpha }^{2}- \biggl( \sum _{\beta } \lambda_{\beta } \biggr) \lambda_{\alpha } \biggr]h \bigl(u_{i}^{\alpha } \epsilon_{\alpha },du(e_{j}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr) \,dv_{g}. \end{aligned}$$
(38)

From (33)-(38), we have

$$\begin{aligned} &\sum_{A}I(V_{A},V_{A}) \\ &\quad = \int_{N}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{\alpha }\lambda_{\beta }h \bigl(u_{i}^{\alpha } \epsilon_{\alpha }, \sigma_{u}(e_{i}) \bigr)h \bigl(u_{j}^{\alpha }\epsilon_{\alpha },\sigma_{u}(e _{j}) \bigr)\,dv_{g} \\ &\quad \quad {}+ \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggl[2 \lambda_{\alpha }^{2}- \biggl( \sum _{\beta } \lambda_{\beta } \biggr) \lambda_{\alpha } \biggr]h \bigl(u_{i}^{\alpha } \epsilon_{\alpha },du(e_{j}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad \quad {}+ \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{\alpha }\lambda_{ \beta }h \bigl(u_{i}^{\alpha } \epsilon_{\alpha },du(e_{j}) \bigr)h \bigl(u_{i}^{\beta } \epsilon_{\beta },du(e_{j}) \bigr)\,dv_{g} \\ &\quad \quad {}+ \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{\alpha }\lambda_{ \beta }h \bigl(u_{i}^{\alpha } \epsilon_{\alpha },du(e_{j}) \bigr)h \bigl(du(e_{i}),u _{j}^{\beta }\epsilon_{\beta } \bigr)\,dv_{g} \\ &\quad \leq \int_{N}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{\alpha } \lambda_{\beta }h \bigl(u_{i}^{\alpha } \epsilon_{\alpha },\sigma_{u}(e_{i}) \bigr)h \bigl(u _{j}^{\alpha }\epsilon_{\alpha },\sigma_{u}(e_{j}) \bigr)\,dv_{g} \\ &\quad \quad {}+ \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggl[2 \lambda_{\alpha }^{2}- \biggl( \sum _{\beta } \lambda_{\beta } \biggr) \lambda_{\alpha } \biggr]h \bigl(u_{i}^{\alpha } \epsilon_{\alpha },du(e_{j}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv_{g} \\ &\quad \quad {}+ \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr)2 \lambda_{\alpha }\lambda_{m} h \bigl(u _{i}^{\alpha } \epsilon_{\alpha },du(e_{j}) \bigr)h \bigl(du(e_{i}),du(e_{j}) \bigr)\,dv _{g} \\ &\quad \leq \int_{N}F'' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \lambda_{\alpha } \lambda_{\beta }h \bigl(u_{i}^{\alpha } \epsilon_{\alpha },\sigma_{u}(e_{i}) \bigr)h \bigl(u _{j}^{\alpha }\epsilon_{\alpha },\sigma_{u}(e_{j}) \bigr)\,dv_{g} \\ &\quad \quad {}+ \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \biggl[2 \lambda_{\alpha }^{2}+2 \lambda_{\alpha } \lambda_{m}- \biggl(\sum_{\beta } \lambda_{\beta } \biggr) \lambda_{\alpha } \biggr]h \bigl(u_{i}^{\alpha } \epsilon_{\alpha }, \sigma_{u}(e _{i}) \bigr) \,dv_{g}. \end{aligned}$$
(39)

If \(F''(t)=F'(t)\), then (39) leads to the following inequality:

$$\begin{aligned} \sum_{A}I(V_{A},V_{A})& \leq \int_{N}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\Vert u^{*}h \bigr\Vert ^{2} \biggl\{ \bigl\Vert u^{*}h \bigr\Vert ^{2} \lambda_{m}^{2} \\ & \quad {}+ \max_{1\leq \alpha \leq m} \biggl[2\lambda_{\alpha }^{2}+2 \lambda_{\alpha }\lambda_{m}- \biggl(\sum _{\beta }\lambda_{\beta } \biggr) \lambda_{\alpha } \biggr] \biggr\} \,dv_{g} . \end{aligned}$$
(40)

If there exists a constant \(c_{F}\) such that \(\frac{F'(t)}{t^{c_{F}}}\) is nonincreasing, it follows that \(F''(t)t\leq c_{F}F'(t)\) on \(t\in (0,\infty )\), thus (39) implies

$$\begin{aligned} \sum_{A}I(V_{A},V_{A})&\leq \int_{M}F' \biggl(\frac{\Vert u^{*}h \Vert ^{2}}{4} \biggr) \bigl\Vert u^{*}h \bigr\Vert ^{2} \biggl\{ 4c_{F} \lambda_{m}^{2} \\ & \quad {}+\max_{1\leq \alpha \leq m} \biggl\{ \biggl[2 \lambda_{\alpha }+2 \lambda_{m}- \biggl(\sum_{\beta } \lambda_{\beta } \biggr) \biggr] \lambda_{\alpha } \biggr\} \biggr\} \,dv _{g} . \end{aligned}$$
(41)

Now, if \(u:N\rightarrow M^{m}\) is a nonconstant F-stationary map and (6) or (7) holds, then, from (41) or (40), we know that \(\sum_{A}I(V_{A},V_{A})<0\) and u is unstable. □

Corollary 4.2

Let \(u:N\rightarrow S^{m}\) be a nonconstant F-stationary map with \(m>4\), where N is any compact Riemannian manifold. If \(c_{F}< \frac{m}{4}-1\) or \(\Vert u^{*}h \Vert ^{2}< m-4\), then u is unstable.

5 Conclusions

In this paper, we investigate F-stationary maps between the compact convex hypersurface \(M^{m}\) and any compact Riemannian manifold N. Assume that the principal curvatures \(\lambda_{i}\) of \(M^{m}\) satisfy \(0<\lambda_{1}\leq \cdots \leq \lambda_{m}\) and \(3\lambda_{m}< \sum_{i=1}^{m-1}\lambda_{i}\), then every nonconstant F-stationary map from \(M^{m}\) to N or from N to \(M^{m}\) is unstable if (6) or (7) holds. We mainly use the second variation formula for F-stationary maps (cf. [5]) to get the instability. In particular, we consider \(S^{m}\) as a special case of compact convex hypersurfaces and obtain similar inferences.