1 Introduction

This paper is devoted to the study of solutions, possibly unbounded and sign-changing, of the semilinear partial differential equation,

$$\begin{aligned} (-\Delta)^{k} u= f(u) \quad \mbox{in } \mathbb {R}^{n} , \end{aligned}$$
(1.1)

where \(k=1,2,3,4\), \(n\geq1\) and \(f\in C^{1}(\mathbb {R})\). Under some assumptions on the nonlinearity f, we will show that this problem does not possess a nontrivial solution with finite Morse index.

In the last decades, problems related to the nonexistence of finite Morse index solutions for second-, fourth- and sixth-order Lane-Emden equation on unbounded domains of \(\mathbb {R}^{n}\) have received a lot of attention (see [212]).

We now list some known results. We start with the second-order Lane-Emden equation

$$\begin{aligned} -\Delta u=|u|^{p-1}u, \quad \mbox{in } \mathbb {R}^{n}, p>1, \end{aligned}$$
(1.2)

Farina [6] proved that nontrivial finite Morse index solutions of (1.2) exist if and only if \(p\geq p_{c}(n)\) and \(n\geq 11\), or \(p=\frac{n+2}{n-2}\) and \(n\geq3\), where \(p_{c}(n) \) is the so-called Joseph-Lundgren exponent. Also, in [13] several Liouville-type theorems are presented for stable solutions, where \(f>0\) is a general convex, nondecreasing function. Extensions to solutions which are merely stable outside a compact set are discussed.

For the fourth-order Lane-Emden problem

$$\begin{aligned} \Delta^{2} u=|u|^{p-1}u, \quad \mbox{in } \mathbb {R}^{n}, p>1, \end{aligned}$$
(1.3)

the subcritical case has been studied by Ramos and Rodriguez for finite Morse index sign-changing solutions (see [14]). The supercritical case is more complicated and there are several new approaches dealing with (1.3). The first approach is to use the test function \(v=-\Delta u\). To this end, one has to use Souplet’s inequality [15], this will give an exponent \(\frac{n}{n-8}+ \epsilon_{n}\) for some \(\epsilon_{n}>0\); see [16]. These results were improved in [12] by adapting Farina’s approach with the restriction on the power \(q<\frac{2}{3}\). The second approach was obtained by Cowan and Ghoussoub [3], Dupaigne et al. [17] and further exploited by Hajlaoui, Ye and one of the authors [7]. This approach improves the first upper bound \(\frac {n}{n-8}+ \epsilon_{n}\), but it again fails to catch the fourth-order Joseph-Lundgren exponent computed by Gazzola and Grunau [18]. It should be remarked that by combining these two approaches one can show that stable positive solutions to (1.3) do not exist when \(n\leq12\) and \(p>1\); see [7]. Finally in [5], Dávila et al. employed a monotonicity formula-based approach and gave a complete classification of stable and finite Morse index (positive or sign-changing) solutions to (1.3). A remarkable outcome of this third approach is that it gives the optimal exponent. The main tool of [5] is a monotonicity formula, used to perform a blow-down analysis and reduce the nonexistence of nontrivial entire solutions for the problem (1.3), to that of nontrivial homogeneous solutions.

Thanks to the Liouville-type theorem with finite Morse index in [8], the authors proved the nonexistence result of sign-changing solutions for the sixth-order problem

$$\begin{aligned} -\Delta^{3} u=|u|^{p-1}u, \quad \mbox{in } \mathbb {R}^{n}, p>1. \end{aligned}$$
(1.4)

Let us give a brief sketch of their method. They proved various classification theorems and Liouville-type results for \(C^{6}\)-solutions belonging to one of the following classes: stable solutions, solutions which are stable outside a compact set of \(\mathbb {R}^{n}\). These results apply to the subcritical case using the Pohozaev identity. In the supercritical case, motivated by the monotonicity formula established in [19], they reduced the nonexistence of nontrivial entire solutions for the problem (1.4), to that of nontrivial homogeneous solutions. Through this approach, they gave a complete classification of stable solutions and those finite Morse indices, whether positive or sign-changing. Also, this analysis reveals the existence of a new critical exponent called the sixth-order Joseph-Lundgren exponent, also they gave the explicit value of this exponent.

In this work, we are concerned with Liouville-type theorems for the nonlinear elliptic equation (1.1) for \(k=1,2,3,4\). We prove Liouville-type theorems for solutions (whether positive or sign-changing) belonging to one of the following classes: stable solutions and solutions which are stable outside a compact set. Our proof is based on a combination of the integral estimates and the Pohozaev-type identity.

The paper is organized as follows. In Section 2 we state our main results, which are then proved in Section 4. Section 3 contains some important auxiliary tools, which are used in the proofs of the main theorems.

2 Statement of the main results

In order to state our results, we present first some assumptions on the nonlinearity f:

\(H_{1}\): There exists a constant \(\theta>1 \) such that

$$f'(s) s^{2} -\theta f(s) s \geq0 ,\quad\forall s\in \mathbb {R}. $$

\(H_{2}\): There exist constants \(s_{0}>0\), \(\theta>1\) and \(C_{0}>0\) such that

$$C_{0} |s|^{\theta+1 } \leq f(s) s, \quad \forall |s|\leq s_{0}. $$

\(H_{3}\): There exists a constant \(0< \alpha_{0}< 1\) such that

$$\begin{aligned} \frac{2n}{n-2k} F(s) -(1+\alpha_{0}) f(s) s \geq0,\quad \forall s \in \mathbb {R}, \end{aligned}$$

where \(F(s)= {\int_{0}^{s}} f(t)\,dt\).

Remark 2.1

(1) \(H_{1}\) implies \(H'_{1}\): There exist constants \(s_{0}>0\), \(\theta>1\) and \(C_{0}>0\) such that

$$C_{0} |s|^{\theta+1 } \leq f(s) s, \quad \forall |s|\geq s_{0}. $$

Indeed, by \(H_{1}\), we have \(\frac{f}{|s|^{\theta}}\) is nondecreasing function for all \(|s|\geq s_{0}\). This implies that

$$C_{0} |s|^{\theta+1 } \leq f(s) s,\quad \forall |s|\geq s_{0}. $$

(2) \(H_{1}\) implies the Ambrosetti-Rabinowitz condition (A-R): there exist constants \(\widetilde{\theta}>2\) and \(s_{0}>0\) such that

$$f(s) s \geq\widetilde{\theta} F(s) > 0,\quad \mbox{for } |s|>s_{0}. $$

Examples

We easily verify that the following functions satisfy \(H_{1}\) and \(H_{2}\).

  1. 1.

    \(f(s)= C_{0} ( 1+ |s|^{q} )|s|^{\theta-1}s\), \(\theta >1\), \(q>0\) and \(C_{0}>0\).

  2. 2.

    \(f(s)= |s|^{\theta-1}s e^{|s|^{q}} \), \(\theta>1\) and \(q>1\).

  3. 3.

    \(f(s)=\sum_{i=1}^{i=i_{0}} c_{i} |s|^{\theta_{i}-1}s\), with \(\theta_{i}>1\) \(\forall i=1,2,\ldots, i_{0}\) and \(c_{i}>0\) \(\forall i=1,2,\ldots, i_{0}\). In this example we choose \(\theta= \min_{1 \leq i \leq i_{0}} (\theta_{i})\).

The examples (1) and (2) show that f can have an exponential growth at infinity. Therefore, clearly an adequate behavior of f at zero is needed to obtain the Liouville theorem. The unique and important nonexistence result for stable solutions of the non-homogeneous second-order equation (1.1) has been recently obtained in [13]. It is shown there, among other things, that (1.1) does not admit nontrivial stable or stable outside a compact set solution provided that f is regular, positive, nondecreasing and convex function in \((0, +\infty)\). More precisely, under a mere nonnegativity assumption on the nonlinearity, the authors begin this work by stating that up to space dimension \(n=4\), bounded stable solutions of (1.1) are trivial. For the next series of results, they restricted themselves to the following class of nonlinearities:

$$\begin{aligned} f \in C^{0}(\mathbb {R}_{+}) \cap C^{2}\bigl(\mathbb {R}^{*}_{+} \bigr),\quad f > 0 \mbox{ is nondecreasing and convex in } \mathbb {R}^{*}_{+}. \end{aligned}$$
(2.1)

In order to relate the nonlinearity f and the below exponents (2.3) and (2.4), they introduced a quantity q defined for \(u \in \mathbb {R}^{*}_{+} \) by \(q(u)=\frac{f^{\prime 2}}{ff''}(u)\), whenever \(ff''(u)\neq0\) and \(q(u)=+\infty\) otherwise. They assumed that \(q(u)\) converges as \(u \rightarrow0^{+}\) and denote its limit by

$$\begin{aligned} q_{0}=\lim_{u\rightarrow0^{+}}q(u) \in\overline{\mathbb {R}}. \end{aligned}$$
(2.2)

Define now \(p_{0} \in\overline{\mathbb {R}}\) the conjugate exponent of \(q_{0}\), by \(\frac{1}{p_{0}} + \frac{1}{q_{0}}=1\). The exponent \(p_{0}\) must be understood as a measure of the ’flatness’ of f at 0. However, we establish their following theorem.

Theorem A

[13] Assume that f satisfies (2.1) and (2.2). Assume that \(u \in C^{2}(\mathbb {R}^{n})\) is stable solution of (1.1) with \(k=1\). Then \(u \equiv0\) if any one of the following conditions holds:

  1. 1.

    \(1\leq n\leq9\) and \(1<\underline{p_{\infty}}\),

  2. 2.

    \(n=10\), \(p_{0} <+\infty\) and \(1<\underline{p_{\infty}}\),

  3. 3.

    \(n\geq 11\), \(p_{0}< p_{c}(n)\) and \(1<\underline{p_{\infty}} <p_{c}(n)\),

where \(\underline{p_{\infty}} \in\overline{\mathbb {R}}\) be defined by \(\overline{q_{\infty}}= {\limsup_{u \rightarrow+\infty }} q(u)\), \(\frac{1}{\underline{p_{\infty}}}+ \frac{1}{\overline {q_{\infty}}}=1\).

A typical example of nonlinearity function f satisfying the above conditions (2.1) and (2.2) is \(f(u)=|u|^{\theta -1}u+|u|^{p-1}u\), where \(p\geq\theta\). A simple calculation, we get \(p_{0}=\theta\) and \(\underline{p_{\infty}}=p\). We use this nonlinearity function to establish some new Liouville-type theorems. Our method is different from (and complementary to) the one used in [13]. It exploits the attractive character of the difference between \(f'(u) u^{2}- \theta f(u) u\geq0\), if \(p\geq\theta\), that is, f satisfies \(H_{1}\) and \(H_{2}\). It will be shown in Theorem 2.1 that problem (1.1) does not possess nontrivial stable solutions if and only if \(1<\theta<p_{c}(n) \), \(\forall p\geq\theta \). Also, we may consider nonlinearities with exponential growth at infinity, i.e. \(\underline{p_{\infty}}=\infty\) satisfying \(H_{1}\) and \(H_{2}\), as for example \(f(u)= |u|^{\theta-1}u e^{|u|^{q}} \), \(\theta>1\) and \(q>0\); therefore, in view again of Theorem 2.1, one has \(u\equiv0\). Furthermore, the present paper is motivated by the interesting work [1], we shall revise the nonexistence theorem of Berestycki and Lions [1] if one substitutes their assumption, which is

$$\int_{\mathbb {R}^{n}}|\nabla u|^{2}+ \int_{\mathbb {R}^{n}}f(u)u< +\infty, $$

by assuming that u is stable or stable outside a compact set. Therefore sign-changing nonlinearities will also be considered and we do not require that \(f'(0)=0\) as the instructive example given by Berestycki and Lions [1] is \(f(u)= -m u +\lambda |u|^{\theta-1}u-\mu|u|^{p-1}u\), where \(\lambda,\mu\) are positive constants, \(m\geq0\) and \(1<\theta,p\). Observe that the above nonlinearity satisfies (\(H_{1}\)), thus we shall prove that equation (1.1) does not possess a nontrivial stable solution provided \(1< p \leq\frac{n+2k}{n-2k}\) and \(p<\theta\), also if u is bounded solution to (1.1) and \(m>0\), then \(u\equiv0\), for any \(\theta\geq p\). If \(p \leq\frac{n+2k}{n-2k}\leq\theta\) and \(m>0\), it follows from the Pohozaev identity that there cannot exist a nontrivial solution of (1.1) which is stable outside a compact set. This result is similar to [1] for \(k=1\). To conclude, this work completes the study of Dupaigne and Farina [13] since here we do not assume that f is positive and convex function. Therefore, to be more concrete in our analysis of nonexistence, we will distinguish between stable and stable outside a compact set. We provide some elliptic decay estimates that we use frequently later in the proofs. Deriving the right decay estimates for solutions of (1.1) plays a fundamental role in most our proofs. On the other hand, we shall also consider the question of the nonexistence of stable solutions (positive or sign-changing) in the supercritical case of a second-order equation.

In order to state our results we need to recall the following.

Definition 2.1

A solution u of (1.1) belonging to \(C^{2k}(\mathbb {R}^{n})\)

  • is said to be stable if

    $$Q_{u}(\psi):= \int_{\mathbb {R}^{n}} \bigl\vert D^{k} \psi \bigr\vert ^{2} \,dx - \int_{\mathbb {R}^{n}} f'(u)\psi^{2} \,dx \geq0 , \quad \forall \psi\in C_{c}^{k}\bigl( \mathbb {R}^{n}\bigr), $$

    where

    $$D^{k}= \textstyle\begin{cases} \Delta^{\frac{k}{2}} &\text{for $k=2,4$,}\\ \nabla\Delta^{\frac{k-1}{2}} &\text{for $k=1,3$,} \end{cases} $$
  • is stable outside a compact set \(\mathcal{K}\subset \mathbb {R}^{n}\), if \(Q_{u} (\psi)\geq0\) for any \(\psi\in C^{k}_{c}(\mathbb {R}^{n} \backslash\mathcal {K})\).

    More generally, the Morse index of a solution is defined as the maximal dimension of all subspaces E of \(C^{k}_{c}(\mathbb {R}^{n})\) such that \(Q_{u} (\psi)< 0\) in \(E\backslash\{0\}\). Clearly, a solution is stable if and only if its Morse index is equal to zero.

Remark 2.2

It is well known that any finite Morse index solution u is stable outside a compact set \(\mathcal{K}\subset \mathbb {R}^{n}\). Indeed, there exist \(K\geq1\) and \(X_{K}:= \operatorname{Span}\{\phi_{1},\ldots, \phi_{K}\} \subset C^{k}_{c}(\mathbb {R}^{n})\) such that \(Q_{u} (\phi)<0\) for any \(\phi\in X_{K}\backslash\{0\}\). Hence, \(Q_{u} (\psi)\geq0\) for every \(\psi\in C^{k}_{c}(\mathbb {R}^{n}\backslash \mathcal{K}) \), where \(\mathcal{K}:= \bigcup_{j=1}^{K} \operatorname{supp}(\phi_{j})\).

To state the following result we need to introduce some notation. Let two critical exponents play an important role, namely the classical Sobolev exponent

$$\begin{aligned} p_{s}(n,k)= \textstyle\begin{cases} +\infty &\text{if $n\leq2k$},\\ \frac{n+2k}{n-2k} &\text{if $n> 2k$}, \end{cases}\displaystyle \end{aligned}$$
(2.3)

and the Joseph-Lundgren exponent

$$\begin{aligned} p_{c}(n)= \textstyle\begin{cases} +\infty &\text{if $n\leq10$},\\ \frac{(n-2)^{2}-4n+ 8\sqrt{n-1}}{(n-2)(n-10)} &\text{if $n\geq11$}. \end{cases}\displaystyle \end{aligned}$$
(2.4)

Note that the exponent \(p_{c}(n)\) is larger than the classical critical Sobolev exponent \(p_{s}(n,1)\), \(n\geq11\).

Now we can state our main nonexistence results.

Theorem 2.1

Let \(u\in C^{2k}(\mathbb {R}^{n})\) be a stable solution of (1.1). Assume that f satisfies \(H_{1}\) and  \(H_{2}\). If \(1<\theta\leq p_{s}(n,k)\), then \(u\equiv0\).

Theorem 2.2

Let \(u\in C^{2k}(\mathbb {R}^{n})\) be a solution of (1.1) which is stable outside a compact set. Assume that f satisfies \(H_{1}\), \(H_{2}\) and \(H_{3}\). If \(1<\theta< p_{s}(n,k)\), then \(u\equiv0\).

The next result concerns the complete classification of entire stable solutions of the second-order equation (1.1) in the supercritical case.

Theorem 2.3

Let \(u\in C^{2}(\mathbb {R}^{n})\) be a stable solution of (1.1) with \(k=1\). Assume that f satisfies \(H_{1}\) and \(H_{2}\). If \(\frac {n+2}{n-2}<\theta< p_{c}(n)\), then \(u\equiv0\).

2.1 Berestycki and Lions Liouville-type theorem

Now, we fix in this subsection

$$\begin{aligned} f(u)=-m u + \lambda|u|^{\theta-1}u- \mu|u|^{p-1}u, \end{aligned}$$
(2.5)

where \(\lambda,\mu\) are positive constants, \(m\geq0\) and \(1<\theta,p\). We will show that \(u=0\) is the unique solution of equation (1.1) under some assumptions on the parameter m, θ and p. Also, we observe that f is neither convex nor positive function in \(\mathbb {R}^{n}\). Then we have the following.

Theorem 2.4

Let \(u\in C^{2k}(\mathbb {R}^{n})\) be a stable solution of (1.1) with f satisfies (2.5).

  1. 1.

    If u is bounded and \(m>0\), then \(u\equiv0\), for any \(\theta\geq p>1\).

  2. 2.

    If \(1< p < \theta\) and \(1< p \leq p_{s}(n,k)\), then \(u\equiv0\).

Remark 2.3

Clearly, if u is unbounded stable solution to (1.1) with \(f(u)=-m u + \lambda|u|^{\theta-1}u- \mu|u|^{p-1}u\) and \(m>0\), then \(u\equiv0\), for any \(\theta\geq p>1\) and \(n<2k\).

Also, we will show, with very few restrictions, that there exists a necessary and sufficient condition for the nonexistence solutions which are stable outside a compact set of problem like (1.1).

Theorem 2.5

Let \(u\in C^{2k}(\mathbb {R}^{n})\) be a solution of (1.1) which is stable outside a compact set with f satisfies (2.5).

  1. 1.

    If \(m>0\) and \(1< p \leq\frac{n+2k}{n-2k} \leq\theta\), then \(u\equiv0\).

  2. 2.

    If \(m=0\), \(1< p \leq\frac{n+2k}{n-2k}\leq\theta\) and \((p, \theta)\neq(\frac{n+2k}{n-2k}, \frac{n+2k}{n-2k})\), then \(u\equiv0\).

3 Auxiliary results

In this section we prove the following lemmas and propositions, which will have a crucial role in the proof of Theorems 2.1, 2.2, 2.3, 2.4 and 2.5. Denote \(B_{R}= \{x\in \mathbb {R}^{n}: |x|< R\}\). The letter C will be used throughout to denote a generic positive constant, which may vary from line to line and only depends on arguments inside the parentheses or arguments which are otherwise clear from the context.

First, define a cut-off function \(\varphi_{ R} \in C^{4}_{c}(\mathbb {R}^{n})\) such that \(\varphi_{ R}\equiv1\) in \(B_{R}\), \(\varphi_{ R}\equiv0 \) in \(\mathbb {R}^{n} \backslash\{ B_{2R}\}\), \(0\leq \varphi_{R}\leq1\) in \(\mathbb {R}^{n}\) and \(|\nabla^{\tau} \varphi_{ R}| \leq C R^{-\tau}\) for \(\tau\leq4\) in \(A_{R}=\{x \in \mathbb {R}^{n}, R \leq |x| \leq2 R \}\).

Lemma 3.1

For any \(v\in C^{8}(\mathbb {R}^{n})\), \(m> 4\) and \(\epsilon>0\) arbitrary small number, there exists a constant \(C_{\epsilon,m}>0\) such that

  1. 1.

    \(R^{-4} \int_{B_{2R}} |\Delta v|^{2}\varphi_{R}^{2m-4} \,dx\leq\epsilon^{2} \int_{B_{2R}}(\Delta^{2} v)^{2}\varphi_{R}^{2m} \,dx+\epsilon^{2}R^{-2} {\int_{B_{2R}}}|\nabla(\Delta v)|^{2}\varphi_{R}^{2m-2} \,dx+ C_{\epsilon,m} R^{-8} \int _{B_{2R}} v^{2}\varphi_{R}^{2m-8} \,dx\),

  2. 2.

    \(R^{-2} {\int_{B_{2R}}}|\nabla(\Delta v)|^{2}\varphi_{R}^{2m-2} \,dx\leq \epsilon {\int_{B_{2R}}}(\Delta^{2} v)^{2}\varphi _{R}^{2m} \,dx+C_{\epsilon,m} R^{-8} {\int_{B_{2R}}}v^{2}\varphi _{R}^{2m-8} \,dx\),

  3. 3.

    \(R^{-6} {\int_{B_{2R}}}|\nabla v|^{2}\varphi_{R}^{2m-6} \,dx\leq\epsilon^{3} {\int_{B_{2R}}}(\Delta^{2} v)^{2}\varphi _{R}^{2m} \,dx+C_{\epsilon,m} R^{-8} {\int_{B_{2R}}} v^{2}\varphi _{R}^{2m-8} \,dx\),

  4. 4.

    \(R^{-4} {\int_{B_{2R}}}|\nabla^{2} v|^{2}\varphi_{R}^{2m-4} \,dx\leq\epsilon^{3} {\int_{B_{2R}}}(\Delta^{2} v)^{2}\varphi _{R}^{2m} \,dx+C_{\epsilon,m} R^{-8} {\int_{B_{2R}}} v^{2}\varphi _{R}^{2m-8} \,dx\),

  5. 5.

    \(R^{-2}\int_{B_{2R}}|\nabla^{3} v|^{2}\varphi_{R}^{2m-2} \,dx \leq\epsilon ^{3} {\int_{B_{2R}}}(\Delta^{2} v)^{2}\varphi_{R}^{2m} \,dx+C_{\epsilon,m} R^{-8} {\int_{B_{2R}}} v^{2}\varphi _{R}^{2m-8} \,dx\).

Proof

Fix \(m> 4\). Let \(v\in C^{8}(\mathbb {R}^{n})\) and \(\varphi_{R} \in C^{4}_{c}(\mathbb {R}^{n})\) defined as above.

Proof of 1. Integrating by parts, we get

$$\begin{aligned}& R^{-4} \int_{B_{2R}}(\Delta v )^{2} \varphi_{R}^{2m-4} \,dx \\ & \quad= R^{-4} \int _{B_{2R}} v \bigl( \Delta^{2} v \varphi_{R}^{2m-4} + \Delta v\Delta \bigl(\varphi_{R}^{2m-4} \bigr) + 2\nabla(\Delta v)\nabla\bigl(\varphi_{R}^{2m-4}\bigr) \bigr) \,dx. \end{aligned}$$
(3.1)

An application of Young’s inequality yields

$$\begin{aligned}& R^{-4} \int_{B_{2R}} v \bigl( \Delta^{2} v \varphi_{R}^{2m-4} + \Delta v\Delta\bigl(\varphi_{R}^{2m-4} \bigr) + 2\nabla(\Delta v)\nabla\bigl(\varphi _{R}^{2m-4}\bigr) \bigr) \,dx\\ & \quad\leq \epsilon^{2} \int_{B_{2R}}\bigl(\Delta^{2} v\bigr)^{2} \varphi_{R}^{2m} \,dx+\epsilon^{2}R^{-2} \int_{B_{2R}} \bigl|\nabla(\Delta v)\bigr|^{2} \varphi_{R}^{2m-2} \,dx \\ & \qquad{}+ \frac{ R^{-4}}{2} \int _{B_{2R}}(\Delta v)^{2}\varphi_{R}^{2m-4} \,dx + C_{\epsilon,m} R^{-8} \int _{B_{2R}}v^{2}\varphi_{R}^{2m-8} \,dx. \end{aligned}$$

Inserting the latter inequality into (3.1), we obtain

$$\begin{aligned} R^{-4} \int_{B_{2R}}(\Delta v )^{2} \varphi_{R}^{2m-4} \,dx \leq &\epsilon^{2} \int_{B_{2R}}\bigl(\Delta^{2} v\bigr)^{2} \varphi_{R}^{2m} \,dx+\epsilon^{2}R^{-2} \int _{B_{2R}} \bigl|\nabla(\Delta v)\bigr|^{2} \varphi_{R}^{2m-2} \,dx \\ &{}+ C_{\epsilon,m} R^{-8} \int_{B_{2R}}v^{2}\varphi_{R}^{2m-8} \,dx. \end{aligned}$$
(3.2)

Proof of 2. Integrating by parts and using again Young’s inequality, we obtain

$$\begin{aligned}& R^{-2} \int_{B_{2R}} \bigl\vert \nabla(\Delta v) \bigr\vert ^{2}\varphi_{R}^{2m-2} \,dx \\ & \quad= -R^{-2} \int _{B_{2R}}\Delta v\Delta^{2} v\varphi_{R}^{2m-2} \,dx-R^{-2} \int _{B_{2R}}\Delta v\nabla(\Delta v)\nabla\bigl( \varphi_{R}^{2m-2}\bigr) \,dx \\ & \quad\leq \epsilon \int_{B_{2R}}\bigl(\Delta^{2} v\bigr)^{2} \varphi_{R}^{2m} \,dx+\frac {2R^{-4}}{\epsilon} \int_{B_{2R}}(\Delta v)^{2}\varphi_{R}^{2m-4} \,dx+ C\epsilon R^{-2} \int_{B_{2R}} \bigl\vert \nabla(\Delta v) \bigr\vert ^{2}\varphi_{R}^{2m-2} \,dx. \end{aligned}$$

Inserting (3.2) into the latter, we derive

$$\begin{aligned} R^{-2} \int_{B_{2R}} \bigl\vert \nabla(\Delta v) \bigr\vert ^{2}\varphi_{R}^{2m-2} \,dx \leq \epsilon \int_{B_{2R}} \bigl(\Delta^{2} v\bigr)^{2} \varphi_{R}^{2m} \,dx+C_{\epsilon,m} R^{-8} \int_{B_{2R}}v^{2}\varphi_{R}^{2m-8} \,dx. \end{aligned}$$
(3.3)

Proof of 3. Integrating by parts, we obtain

$$\begin{aligned} \int_{B_{2R}} \vert \nabla v \vert ^{2} \varphi_{R}^{2m-6} \,dx =&\frac{R^{-6}}{2} \int _{B_{2R}}\Delta\bigl(v^{2}\bigr) \varphi_{R}^{2m-6} \,dx-R^{-6} \int_{B_{2R}}v\Delta v\varphi_{R}^{2m-6} \,dx \\ \leq& \epsilon R^{-4} \int _{B_{2R}}(\Delta v)^{2}\varphi_{R}^{2m-4} \,dx +C_{\epsilon,m} R^{-8} \int_{B_{2R}} v^{2}\varphi_{R}^{2m-8} \,dx. \end{aligned}$$

From (3.2) and (3.3), we deduce

$$\begin{aligned} R^{-6} \int_{B_{2R}} \vert \nabla v \vert ^{2} \varphi_{R}^{2m-6} \,dx \leq\epsilon^{3} \int _{B_{2R}}\bigl(\Delta^{2} v\bigr)^{2} \varphi_{R}^{2m} \,dx+C_{\epsilon,m} R^{-8} \int _{B_{2R}} v^{2}\varphi_{R}^{2m-8} \,dx. \end{aligned}$$
(3.4)

Proof of 4. Integrating by parts, we obtain

$$\begin{aligned}& R^{-4}\int_{B_{2R}} \bigl\vert \nabla^{2} v \bigr\vert ^{2}\varphi_{R}^{2m-4} \,dx \\& \quad=-R^{-4} \int _{B_{2R}}\nabla v\nabla(\Delta v)\varphi_{R}^{2m-4} \,dx+\frac{R^{-4}}{2} \int _{B_{2R}} \vert \nabla v \vert ^{2}\Delta\bigl( \varphi_{R}^{2m-4}\bigr)\,dx. \end{aligned}$$
(3.5)

Using Young’s inequality and from (3.3) and (3.4), we obtain

$$\begin{aligned} R^{-4} \int_{B_{2R}} \bigl\vert \nabla^{2} v \bigr\vert ^{2}\varphi_{R}^{2m-4} \,dx \leq& R^{-2} \int _{B_{2R}} \bigl\vert \nabla(\Delta v) \bigr\vert ^{2}\varphi_{R}^{2m-2}\,dx +C R^{-6} \int _{B_{2R}} \vert \nabla v \vert ^{2} \varphi_{R}^{2m-6}\,dx \\ \leq& \epsilon^{3} \int_{B_{2R}}\bigl(\Delta^{2} v\bigr)^{2} \varphi _{R}^{2m} +C_{\epsilon,m} R^{-8} \int_{B_{2R}} v^{2}\varphi_{R}^{2m-8}. \end{aligned}$$

Proof of 5. Integrating by parts, we get

$$\begin{aligned}& R^{-2} \int_{B_{2R}} \bigl\vert \nabla^{3} v \bigr\vert ^{2}\varphi_{R}^{2m-2} \,dx\\ & \quad =R^{-2} \int _{B_{2R}} \biggl( \bigl\vert \nabla(\Delta v) \bigr\vert ^{2} \varphi_{R}^{2m-2}+ v_{ij} \Delta v_{i} \bigl(\varphi_{R}^{2m-2} \bigr)_{j}+\frac{1}{2} \bigl\vert \nabla^{2} v \bigr\vert ^{2} \Delta\bigl(\varphi _{R}^{2m-2}\bigr) \biggr)\,dx, \end{aligned}$$

where \(f_{i}= \frac{\partial f}{\partial x_{i}}\), \(f_{ij}= \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\) and \(f_{ijk}= \frac{\partial^{3} f}{\partial x_{k} \partial x_{j} \partial x_{i}}\). (Here and in the sequel, we use the Einstein summation convention: an index occurring twice in a product is to be summed from 1 up to the space dimension.)

Using Young’s inequality of the above, we deduce

$$\begin{aligned}& R^{-2} \int_{B_{2R}} \bigl\vert \nabla^{3} v \bigr\vert ^{2}\varphi_{R}^{2m-2} \,dx \\& \quad\leq C R^{-2} \int _{B_{2R}} \bigl\vert \nabla(\Delta v) \bigr\vert ^{2} \varphi_{R}^{2m-2}\,dx+C R^{-4} \int _{B_{2R}} \bigl\vert \nabla^{2} v \bigr\vert ^{2} \varphi_{R}^{2m-4}\,dx, \end{aligned}$$
(3.6)

which gives the desired conclusion. □

Lemma 3.2

For any \(m>4\) and \(\epsilon>0\) arbitrary small number, there exists a constant \(C_{\epsilon,m}>0\) such that

$$\begin{aligned} \bigl(\Delta^{2}\bigl(u\varphi_{R}^{m} \bigr) \bigr)^{2} \leq(1+\epsilon) \bigl(\varphi _{R}^{m} \Delta^{2} u \bigr)^{2}+ C_{\epsilon,m} \mathbf{B}(u, \varphi_{R},m), \end{aligned}$$
(3.7)

where \(\mathbf{B}(u,\varphi_{R}, m)= ( R^{-4} |\Delta u|^{2}\varphi _{R}^{2m-4} + R^{-2} |\nabla(\Delta u)|^{2}\varphi_{R}^{2m-2} + R^{-6}|\nabla u|^{2}\varphi_{R}^{2m-6} + R^{-8} u^{2} \varphi_{R}^{2m-8} + R^{-4} |\nabla^{2} u|^{2} \varphi_{R}^{2m-4} )\).

Proof

Let \(\varphi_{R} \in C^{4}_{c}(\mathbb {R}^{n})\) be defined as above and \(m>4\). Direct calculation yields

$$ \Delta^{2}\bigl(u\varphi_{R}^{m} \bigr)= \varphi_{R}^{m} \Delta^{2} u+\mathbf{A} \bigl(u, \varphi_{R}^{m}\bigr), $$
(3.8)

where \(\mathbf{A}(u, \varphi_{R}^{m})=2\Delta u\Delta\varphi_{R}^{m}+4\nabla u\nabla(\Delta\varphi_{R}^{m})+u\Delta^{2}\varphi_{R}^{m}+4\nabla(\Delta u)\nabla (\varphi_{R}^{m})+4 u_{ij} (\varphi_{R}^{m})_{ij}\).

Thus,

$$\bigl(\Delta^{2}\bigl(u\varphi_{R}^{m}\bigr) \bigr)^{2} = \bigl(\varphi_{R}^{m} \Delta^{2} u \bigr)^{2}+ \mathbf{A}^{2}\bigl(u, \varphi_{R}^{m}\bigr)+ 2 \mathbf{A}\bigl(u, \varphi _{R}^{m}\bigr) \varphi_{R}^{m} \Delta^{2} u. $$

Now by the Young inequality, for any \(\epsilon>0\), there exists \(C_{\epsilon}\) a constant such that

$$ \bigl(\Delta^{2}\bigl(u\varphi_{R}^{m} \bigr) \bigr)^{2} \leq(1+\epsilon) \bigl(\varphi _{R}^{m} \Delta^{2} u \bigr)^{2}+ C_{\epsilon} \mathbf{A}^{2}\bigl(u, \varphi_{R}^{m}\bigr). $$
(3.9)

For the second term on the right hand side of inequality (3.9), one obtains

$$\begin{aligned} \mathbf{A}^{2}\bigl(u, \varphi_{R}^{m}\bigr) \leq& C_{\epsilon} \bigl( \vert \Delta u \vert ^{2} \bigl\vert \Delta\varphi_{R}^{m} \bigr\vert ^{2} + \vert \nabla u \vert ^{2} \bigl\vert \nabla\bigl(\Delta \varphi_{R}^{m}\bigr) \bigr\vert ^{2} + \vert u \vert ^{2} \bigl\vert \Delta^{2} \varphi_{R}^{m} \bigr\vert ^{2} \\ &{}+ \bigl\vert \nabla(\Delta u) \bigr\vert ^{2} \bigl\vert \nabla\bigl( \varphi_{R}^{m}\bigr) \bigr\vert ^{2} + \vert u_{ij} \vert ^{2} \bigl\vert \bigl(\varphi_{R}^{m} \bigr)_{ij} \bigr\vert ^{2} \bigr) \\ \leq& C_{\epsilon,m} \bigl( R^{-4} \vert \Delta u \vert ^{2}\varphi_{R}^{2m-4} + R^{-2} \bigl\vert \nabla(\Delta u) \bigr\vert ^{2}\varphi_{R}^{2m-2} + R^{-6} \vert \nabla u \vert ^{2}\varphi _{R}^{2m-6} \\ &{}+ R^{-8} u^{2} \varphi_{R}^{2m-8} + R^{-4} \bigl\vert \nabla^{2} u \bigr\vert ^{2} \varphi _{R}^{2m-4} \bigr), \end{aligned}$$

which gives the desired inequality (3.7). □

Using the previous lemmas, we obtain the following results.

Proposition 3.1

Let \(u\in C^{2k}(\mathbb {R}^{n})\) be a stable solution of (1.1). Assume that f satisfies \(H_{1}\) and \(H_{2}\). Then there exists a constant \(C>0\) such that, for any \(R>0\), we have

$$\int_{B_{R}} \bigl( \vert u \vert ^{\theta+1}+ \bigl\vert D^{k} u \bigr\vert ^{2} \bigr) \,dx \leq C R^{n- 2k\frac{\theta+ 1}{\theta-1}} \quad\textit{and} \quad \int_{B_{R}} f(u) u \,dx \leq C R^{n- 2k\frac {\theta+ 1}{\theta-1}}. $$

When attempting to prove the nonexistence of the nontrivial solution which is stable outside a compact set of (1.1) in the subcritical case, we need first to establish the following proposition.

Proposition 3.2

Let \(u\in C^{2k}(\mathbb {R}^{n})\) be a solution of (1.1) which is stable outside a compact set. Assume that f satisfies \(H_{1}\) and \(H_{2}\). Then there exists a constant \(C>0\) such that, for any \(R>0\), we have

$$\int_{B_{R}} \bigl( \vert u \vert ^{\theta+1} + \bigl\vert D^{k} u \bigr\vert ^{2} \bigr)\,dx \leq C \bigl(1+ R^{n- 2k\frac{\theta+ 1}{\theta-1}} \bigr) \quad\textit{and} \quad \int_{B_{R}} f(u) u \,dx \leq C \bigl(1+ R^{n- 2k\frac{\theta+ 1}{\theta-1}} \bigr). $$

Proof of Proposition 3.1

The proof of the case \(k=1,2,3\), bears resemblance to an argument found in [5, 6, 8]. For more details, please see the proof of proposition 4 in [6] for the case \(k=1\), the proof of Lemma 4.2 in [5] for the case \(k=2\) and the proof of Proposition 1.2 in [8] for the case \(k=3\). For this reason, we omit the details.

Proof of the case \(k=4\). Let \(\varphi_{ R} \in C^{4}_{c}(\mathbb {R}^{n})\) defined as above, let u be a solution of equation (1.1). The function \(u \varphi_{ R}^{m} \) belongs to \(C^{4}_{c}(\mathbb {R}^{n})\), and thus it can be used as a test function in the quadratic form \(Q_{u}\). Hence, the stability assumption on u gives

$${ \int_{B_{2R}}}f'(u)u^{2} \varphi_{R}^{2m} \,dx \leq { \int_{B_{2R}}} \bigl\vert \Delta^{2} \bigl(u \varphi_{R}^{m}\bigr) \bigr\vert ^{2} \,dx. $$

Applying Lemma 3.2, we obtain

$$\begin{aligned} \int_{B_{2R}}f'(u)u^{2} \varphi_{R}^{2m} \,dx \leq&(1+\epsilon) \int_{B_{2R}} \bigl(\varphi_{R}^{m} \Delta^{2} u \bigr)^{2} \,dx+ C_{\epsilon} \int _{B_{2R}}\mathbf{B}(u,\varphi_{R}, m)\,dx. \end{aligned}$$
(3.10)

In view of Lemma 3.1, we get

$$\begin{aligned} \int_{B_{2R}}f'(u)u^{2} \varphi_{R}^{2m} \,dx \leq& (1+\epsilon) \int _{B_{2R}} \bigl(\varphi_{R}^{m} \Delta^{2} u \bigr)^{2}+ C_{\epsilon}R^{-8} \int_{B_{2R}} u^{2} \varphi_{R}^{2m-8} \,dx. \end{aligned}$$
(3.11)

Multiplying equation (1.1) by \(u\varphi_{R}^{2m}\) and integrating by parts, we get

$${ \int_{B_{2R}}}\Delta^{2} u \Delta^{2} \bigl( u \varphi _{R}^{2m} \bigr) \,dx= { \int_{B_{2R}} } f(u)u \varphi_{R}^{2m} \,dx. $$

From (3.8), we derive

$$\begin{aligned}& \int_{B_{2R}} \Delta^{2} u \Delta^{2} \bigl( u \varphi_{R}^{2m} \bigr)\,dx \\& \quad= \int_{B_{2R}} \Delta^{2} u \bigl\{ \bigl( \Delta^{2} u\bigr)\varphi_{R}^{2m}+2\Delta u\Delta \bigl(\varphi_{R}^{2m}\bigr)+4u_{ij} \bigl( \varphi_{R}^{2m}\bigr)_{ij}\\& \qquad{}+4\nabla(\Delta u) \nabla\bigl(\varphi_{R}^{2m}\bigr)+4\nabla u\nabla\bigl( \Delta\bigl(\varphi_{R}^{2m}\bigr)\bigr)+u\Delta ^{2}\bigl(\varphi_{R}^{2m}\bigr) \bigr\} \,dx, \end{aligned}$$

therefore

$$\begin{aligned} \int_{B_{2R}} \bigl(\bigl(\Delta^{2} u \bigr)^{2}\varphi_{R}^{2m} - f(u)u \varphi _{R}^{2m} \bigr)\,dx =- \int_{B_{2R}}\Delta^{2} u \mathbf{A}\bigl(u, \varphi_{R}^{2m}\bigr)\,dx. \end{aligned}$$
(3.12)

Then, using Young’s inequality, we derive

$$\int_{B_{2R}} \bigl(\bigl(\Delta^{2} u \bigr)^{2}\varphi_{R}^{2m} -f(u)u\varphi _{R}^{2m} \bigr)\,dx \leq \epsilon \int_{B_{2R}} \bigl(\Delta^{2} u\bigr)^{2} \varphi _{R}^{2m} \,dx + C_{\epsilon,m} \int_{B_{2R}}\mathbf{B}(u,\varphi_{R},m)\,dx. $$

Applying again Lemma 3.1, we have

$$\begin{aligned}& \int_{B_{2R}}\bigl(\Delta^{2} u\bigr)^{2} \varphi_{R}^{2m} \,dx- \int_{B_{2R}} f(u)u\varphi _{R}^{2m} \,dx \\& \quad\leq \epsilon \int_{B_{2R}} \bigl(\Delta^{2} u\bigr)^{2} \varphi_{R}^{2m} \,dx +C_{\epsilon,m} R^{-8} \int_{B_{2R}}u^{2}\varphi_{R}^{2m-8} \,dx. \end{aligned}$$
(3.13)

Multiplying (3.13) by θ and combining it with (3.11), we derive

$$\begin{aligned}& \int_{B_{2R}}\bigl[f'(u)u^{2}-\theta f(u)u \bigr]\varphi_{R}^{2m} \,dx+\bigl[\theta(1-\epsilon )-(1+ \epsilon)\bigr] \int_{B_{2R}}\bigl(\Delta^{2} u\bigr)^{2} \varphi_{R}^{2m} \,dx\\& \quad\leq C R^{-8} \int_{B_{2R}}u^{2}\varphi_{R}^{2m-8} \,dx. \end{aligned}$$

From \((H_{1})\) and for ϵ sufficiently small such that \(\epsilon < \frac{\theta-1}{\theta+1}\), we deduce

$$\begin{aligned} \int_{B_{2R}}\bigl(\Delta^{2} u\bigr)^{2} \varphi_{R}^{2m} \,dx \leq& C R^{-8} \int _{B_{2R}}u^{2}\varphi_{R}^{2m-8} \,dx. \end{aligned}$$
(3.14)

By Young’s inequality, we have

$$\begin{aligned} \int_{B_{2R}}\bigl(\Delta^{2} u\bigr)^{2} \varphi_{R}^{2m} \,dx \leq \frac{2}{\theta+1} \int_{B_{2R}}|u|^{\theta+1}\varphi_{R}^{(\theta +1)(m-4)} \,dx+CR^{n-8\frac{\theta+1}{\theta-1}}. \end{aligned}$$
(3.15)

As above, we find from (3.13) that

$$\begin{aligned} \int_{B_{2R}}f(u)u\varphi_{R}^{2m} \,dx \leq& (1+\epsilon) \int_{B_{2R}} \bigl(\Delta^{2} u\bigr)^{2} \varphi_{R}^{2m} \,dx+C_{\epsilon,m} R^{-8} \int _{B_{2R}}u^{2}\varphi_{R}^{2m-8} \,dx. \end{aligned}$$

Using (3.14) in the latter, we obtain

$$\begin{aligned} \int_{B_{2R}}f(u)u\varphi_{R}^{2m} \,dx \leq& C_{\epsilon}R^{-8} \int _{B_{2R}}u^{2}\varphi_{R}^{2m-8} \,dx \\ \leq& \frac{2}{\theta+1} \int_{B_{2R}}|u|^{\theta+1}\varphi_{R}^{(\theta +1)(m-4)} \,dx+CR^{n-8\frac{\theta+1}{\theta-1}}. \end{aligned}$$
(3.16)

From \((H'_{1})\) and \((H_{2})\), we get

$$\begin{aligned} C_{0} { \int_{B_{2R}}}|u|^{\theta+1}\varphi_{R}^{2m} \,dx \leq& { \int_{B_{2R}}}f(u)u\varphi_{R}^{2m} \,dx \\ \leq& \frac{2}{\theta+1} { \int_{B_{2R}}} \vert u \vert ^{\theta+1}\varphi _{R}^{(\theta+1)(m-4)} \,dx+CR^{n-8\frac{\theta+1}{\theta-1}}, \end{aligned}$$

if \((\theta+1)(m-4)=2m\), then

$$\begin{aligned} \int_{B_{2R}} \vert u \vert ^{\theta+1} \varphi_{R}^{2m} \,dx\leq CR^{n-8\frac{\theta +1}{\theta-1}}. \end{aligned}$$
(3.17)

From (3.15), (3.16) and (3.17), we deduce that

$${ \int_{B_{2R}}}\bigl(\Delta^{2} u\bigr)^{2} \varphi_{R}^{2m} \,dx\leq CR^{n-8\frac{\theta+1}{\theta-1}},\quad\mbox{and} \quad { \int_{B_{2R}}}f(u)u\varphi_{R}^{2m} \,dx\leq CR^{n-8\frac{\theta+1}{\theta-1}}. $$

Since \(\varphi_{R} \equiv1\) in \(B_{R}\), we have

$${ \int_{B_{R}}} \bigl(|u|^{\theta+1} + \bigl( \Delta^{2} u\bigr)^{2} \bigr) \,dx\leq CR^{n-8\frac{\theta+1}{\theta-1}},\quad \mbox{and}\quad { \int_{B_{R}}}f(u)u \,dx\leq CR^{n-8\frac {\theta+1}{\theta-1}}. $$

 □

Proof of Proposition 3.2

The proof of the case \(k=1,2,3\), bears resemblance to an argument found in [5, 6, 8]. Now, we prove the case \(k=4\). The proof is the same as the proof of Proposition 3.1. We need only to replace \(\varphi_{R}\) by \(\varphi_{a,R}\), where \(\varphi_{a,R}\in C^{4}_{c}(\mathbb {R}^{n})\) satisfies \(0\leq\varphi_{a,R} \leq1\) everywhere on \(\mathbb {R}^{n}\) such that \(\varphi_{a,R}(x)= 0 \) for \(|x|< a\) or \(|x|>2 R\), \(\varphi_{a,R}(x)=1\) for \(2a < |x|< R\) and \(|\nabla^{\tau} \varphi_{a_{0},R} |\leq C R^{-\tau}\), \(\tau \leq4\), for \(R < |x|< 2R \). By the stability assumption on u, there exists \(a_{0}>0\) such that \(Q_{u}(u \varphi_{a_{0},R}^{m} )\geq0\) for any \(R> 2a_{0}\). Hence, by the choice of the test function \(\varphi_{a,R} \), the constant \(C_{a_{0}}\) depending on \(a_{0}, \epsilon, m\) and u appears and the rest of the proof is unchanged. Thus Proposition 3.2 follows. □

As in [20], we shall employ a cut-off function with compact support to derive a variant of the Pohozaev identity. This device allows us to avoid the spherical integrals raised in [21], which are very difficult to control, especially for the polyharmonic situations. For \(k=1,2,3\), the Pohozaev identity is similar to [7, 8, 20, 22].

Proposition 3.3

Let \(u\in C^{8}(\mathbb {R}^{n})\) be a solution of (1.1) and \(\psi\in C^{4}_{c}(B_{R})\), then

$$\begin{aligned}& \frac{n-8}{2} \int_{B_{R}} \bigl(\Delta^{2} u \bigr)^{2} \psi \,dx - n \int_{B_{R}} F(u) \psi \,dx= \int_{B_{R}} B_{4}(u, \psi) \,dx, \end{aligned}$$
(3.18)

where

$$\begin{aligned} B_{4}(u, \psi) =& F(u) \langle x, \nabla\psi \rangle - \frac{1}{2} \bigl(\Delta^{2} u \bigr)^{2} \langle x, \nabla\psi \rangle + 2\Delta^{2} u \nabla \bigl( \bigl\langle x, \nabla( \Delta u) \bigr\rangle \bigr) \nabla\psi \\ & {}+ \Delta^{2} u \bigl\{ \bigl\langle x, \nabla(\Delta u)\bigr\rangle \Delta\psi + 2 \Delta u \Delta\psi \bigr\} + \Delta^{2} u \bigl\{ 4 \nabla(\Delta u) \nabla\psi+ \Delta^{2} \psi \langle x, \nabla u \rangle \bigr\} \\ &{}+ \Delta^{2} u \bigl\{ \Delta\psi \Delta \bigl( \langle x, \nabla u \rangle \bigr) +2 \nabla(\Delta\psi) \nabla \bigl( \langle x, \nabla u \rangle \bigr) + 2 \Delta \bigl[ \nabla \bigl( \langle x, \nabla u \rangle \bigr) \nabla \psi \bigr] \bigr\} . \end{aligned}$$

Thanks to Propositions 3.2 and 3.3, we derive the following.

Proposition 3.4

Let \(u\in C^{2k}(\mathbb {R}^{n})\) be a solution of (1.1) which is stable outside a compact set. Assume that f satisfies \(H_{1}\) and \(H_{2}\). If \(1 < \theta< p_{s}(n,k)\), then

$$\begin{aligned} \int_{\mathbb {R}^{n}} \bigl| D^{k} u \bigr|^{2} \,dx= \frac{2n}{n-2k} \int_{\mathbb {R}^{n}} F(u) \,dx \end{aligned}$$
(3.19)

and

$$\begin{aligned} \int_{\mathbb {R}^{n}} \bigl\vert D^{k} u \bigr\vert ^{2} \,dx= \int_{\mathbb {R}^{n}} f(u) u \,dx < \infty. \end{aligned}$$
(3.20)

Proof of Proposition 3.3

Let \(u\in C^{8}(\mathbb {R}^{n})\) be a solution of (1.1) and \(\psi\in C^{4}_{c}(B_{R})\), we have

$$\Delta \bigl( \langle x, \nabla u \rangle \psi \bigr)= \bigl\langle x,\nabla( \Delta u) \bigr\rangle \psi + 2 \Delta u \psi+ \langle x, \nabla u \rangle \Delta \psi+ 2 \nabla \bigl( \langle x, \nabla u \rangle \bigr) \nabla\psi. $$

Multiplying equation (1.1) by \(\langle x, \nabla u \rangle \psi\) and integrating by parts in \(B_{R}\), we obtain

$$\begin{aligned} \int_{B_{R}} f(u) \langle x, \nabla u \rangle \psi \,dx= \int_{B_{R}} \Delta^{3} u \Delta \bigl( \langle x, \nabla u \rangle \psi \bigr) \,dx. \end{aligned}$$
(3.21)

For the right hand side of (3.21), we integrate by parts to get

$$\begin{aligned}& \int_{B_{R}} \Delta^{3} u \Delta \bigl( \langle x, \nabla u \rangle \psi \bigr) \,dx \\ & \quad= \int_{B_{R}} \Delta^{3} u \bigl( \bigl\langle x,\nabla( \Delta u) \bigr\rangle \psi+ 2 \Delta u \psi + \langle x, \nabla u \rangle \Delta \psi + 2 \nabla \bigl( \langle x, \nabla u \rangle \bigr) \nabla\psi \bigr) \,dx \\ & \quad= \int_{B_{R}} \Delta^{2} u \Delta\bigl[\bigl\langle x, \nabla(\Delta u) \bigr\rangle \bigr] \psi \,dx + 2 \int_{B_{R}} \Delta^{2} u \nabla\bigl[ \bigl\langle x, \nabla(\Delta u) \bigr\rangle \bigr] \nabla\psi \,dx +2 \int _{B_{R}} \bigl(\Delta^{2} u\bigr)^{2} \psi \,dx \\ & \qquad{}+ \int_{B_{R}} \Delta ^{2} u \bigl\{ \bigl\langle x, \nabla(\Delta u) \bigr\rangle \Delta\psi + 2 \Delta u \Delta\psi +4 \nabla(\Delta u) \nabla\psi+ \langle x, \nabla u \rangle \Delta^{2} \psi \bigr\} \,dx \\ & \qquad{}+ \int_{B_{R}} \Delta^{2} u \bigl\{ \Delta\bigl[ \langle x, \nabla u \rangle \bigr]\Delta\psi + 2 \nabla\bigl[ \langle x, \nabla u\rangle \bigr] \nabla(\Delta\psi) \bigr\} \,dx \\ & \qquad {}+ 2 \int _{B_{R}} \Delta^{2} u \Delta\bigl[\nabla \bigl( \langle x, \nabla u\rangle \bigr) \nabla \psi\bigr] \,dx. \end{aligned}$$
(3.22)

For the first term on the right hand side of (3.22), we integrate by parts to find

$$\begin{aligned}& \int_{B_{R}} \Delta^{2} u \Delta\bigl[ \bigl\langle x, \nabla(\Delta u) \bigr\rangle \bigr] \psi \,dx= \frac{4-n}{2} \int_{B_{R}} \bigl(\Delta^{2} u\bigr)^{2} \psi \,dx- \frac{1}{2} \int _{B_{R}} \bigl(\Delta^{2} u\bigr)^{2} \langle x,\nabla\psi \rangle \,dx. \end{aligned}$$
(3.23)

For the term on the left hand side of (3.22), by integrating by parts, we derive

$$\begin{aligned} \int_{B_{R}} f(u) \langle x, \nabla u \rangle \psi \,dx =& \int_{B_{R}} \bigl\langle x, \nabla \bigl[F( u)\bigr] \bigr\rangle \psi \,dx \\ =&-n \int_{B_{R}} F( u) \psi \,dx- \int _{B_{R}} F( u) \langle x,\nabla\psi \rangle \,dx . \end{aligned}$$
(3.24)

Therefore, the claim follows from (3.21)-(3.24). □

Here, we are concerned with the proof of Proposition 3.4.

Proof of Proposition 3.4

To simplify the proof, we will concentrate on the case \(k = 4\) which is the most delicate case; even we believe that the results should hold true for \(k=1,2,3\) , for more details, see for example [5, 6, 8, 23]. Let \(R_{0}>0\). Assume that u is stable outside \(B_{R_{0}}\). Let \(0 < \alpha< \beta\). We begin by defining some smooth compactly supported functions which will be used several times in the sequel. More precisely, we choose \(\phi_{R}\in C^{4}_{c}(\mathbb {R}^{n})\) satisfies \(0\leq\phi_{R} \leq1\) everywhere on \(\mathbb {R}^{n}\) such that

$$\phi_{R}(x)= \textstyle\begin{cases} 1 &\text{for $\alpha R< |x|< \beta R$,}\\ 0&\text{for $|x|< \frac{\alpha}{2}R$ or $|x|> 2 \beta R$,}\\ |\nabla^{k} \phi_{R}|\leq CR^{-k} &\text{on $\{\frac{\alpha}{2}R < |x|< 2 \beta R\}, k=1,2,3,4$}. \end{cases} $$

For R large enough such that \(\frac{\alpha}{2}R>R_{0}\), then \(B_{R_{0}} \cap\{\frac{\alpha}{2}R \leq|x|\leq2 \beta R\}= \varnothing\). Then u is stable in \(A_{\frac{\alpha}{2}R}^{2 \beta R}:=\{\frac{\alpha }{2}R < |x|< 2 \beta R\}\). By Proposition 3.1, there exists a constant \(C>0\) such that

$$\begin{aligned} \int_{{A^{\beta R}_{\alpha R}}} \bigl( \vert u \vert ^{\theta+1} + \bigl( \Delta^{2} u\bigr)^{2} \bigr) \,dx\leq C R^{n- 8\frac{\theta+ 1}{\theta-1}} \quad \mbox{and}\quad \int_{A^{\beta R}_{\alpha R}} f(u) u \,dx\leq C R^{n- 8\frac{\theta+ 1}{\theta-1}} . \end{aligned}$$
(3.25)

Let \(\psi_{R}\in C^{4}_{c}(\mathbb {R}^{n})\) satisfies \(0\leq\psi_{R} \leq1\) on \(\mathbb {R}^{n}\) defined by

$$\psi_{R}(x)= \textstyle\begin{cases} 1 &\text{for $|x|< \alpha R$,}\\ 0 &\text{for $|x|> \beta R$,}\\ |\nabla^{k} \psi_{R}|\leq CR^{-k} &\text{on $\{\alpha R < |x|< \beta R\}, k=1,2,3,4$}. \end{cases} $$

In view of Lemma 3.1 and Proposition 3.1, we have

$$\begin{aligned}& \int_{B_{\beta R}} \bigl( \vert u \vert ^{\theta+1} \psi^{2m}_{R} + \bigl(\Delta^{2} u \bigr)^{2} \psi^{2m}_{R} \bigr) \,dx\leq C R^{n- 8\frac{\theta+ 1}{\theta-1}} , \end{aligned}$$
(3.26)
$$\begin{aligned}& \int_{B_{\beta R}} \bigl( \mathbf{B}(u,\psi_{R}, m) + R^{-2} \bigl|\nabla^{3} u \bigr|^{2} \psi^{2m-2}_{R} \bigr) \,dx\leq C R^{n- 8\frac{\theta+ 1}{\theta-1}}. \end{aligned}$$
(3.27)

Now, we estimate all terms on the right hand side of (3.18). Take \(\psi=\psi_{R}^{2m}\) in (3.18), \(m>4\).

The second term on the right hand side of (3.18) can be estimated as

$$\begin{aligned} \biggl\vert - \frac{1}{2} \int_{B_{\beta R}} \bigl(\Delta^{2} u \bigr)^{2} \bigl\langle x, \nabla\psi _{R}^{2m}\bigr\rangle \,dx \biggr\vert =& \biggl\vert - \frac{1}{2} \int_{A^{{\beta R}}_{\alpha R}} \bigl(\Delta^{2} u \bigr)^{2} \bigl\langle x, \nabla\psi_{R}^{2m} \bigr\rangle \,dx \biggr\vert \\ \leq& C_{m} \int_{A^{{\beta R}}_{\alpha R}} \bigl(\Delta^{2} u \bigr)^{2} \psi_{R}^{2m-1} \,dx \leq C R^{ n- 8\frac {\theta+ 1}{\theta-1}}. \end{aligned}$$
(3.28)

Next

$$\begin{aligned}& \biggl\vert \int_{B_{\beta R}} \bigl[\Delta^{2} u \bigl( \bigl\langle x, \nabla(\Delta u)\bigr\rangle \Delta\psi_{R}^{2m} + 2 \Delta u \Delta\psi_{R}^{2m} +4 \nabla (\Delta u) \nabla \psi_{R}^{2m} + \Delta^{2} \psi_{R}^{2m} \langle x, \nabla u \rangle \bigr) \bigr] \,dx \biggr\vert \\ & \quad= \biggl\vert \int_{A^{{\beta R}}_{\alpha R}} \bigl[ \Delta^{2} u \bigl( \bigl\langle x, \nabla(\Delta u)\bigr\rangle \Delta\psi_{R}^{2m} + 2 \Delta u \Delta\psi_{R}^{2m} +4 \nabla(\Delta u) \nabla \psi_{R}^{2m} + \Delta^{2} \psi_{R}^{2m} \langle x, \nabla u \rangle \bigr) \bigr] \,dx \biggr\vert \\ & \quad\leq C_{m} \int_{A^{\beta R}_{\alpha R}} \bigl\vert \Delta^{2} u \bigr\vert \bigl( R^{-1} \bigl\vert \nabla(\Delta u) \bigr\vert \psi _{R}^{2m-2} + R^{-2} \vert \Delta u \vert \psi_{R}^{2m-2} + R^{-3} \vert \nabla u \vert \psi _{R}^{2m-4} \bigr) \,dx \\ & \quad\leq C_{m} \int_{A^{\beta R}_{\alpha R}} \bigl\vert \Delta^{2} u \bigr\vert \bigl( R^{-1} \bigl\vert \nabla (\Delta u) \bigr\vert \psi_{R}^{m-1} + R^{-2} \vert \Delta u \vert \psi_{R}^{m-2} + R^{-3} \vert \nabla u \vert \psi_{R}^{m-3} \bigr) \,dx, \end{aligned}$$
(3.29)

the last line comes from the fact that \(0 \leq\psi_{R} \leq1\), hence \(\psi_{R}^{s}\leq\psi_{R}^{t}\), for any \(t\leq s\).

By applying the Hölder inequality and the Young inequality to (3.29), we have

$$\begin{aligned}& \biggl\vert \int_{B_{\beta R}} \bigl[\Delta^{2} u \bigl( \bigl\langle x, \nabla(\Delta u)\bigr\rangle \Delta\psi_{R}^{2m} + 2 \Delta u \Delta\psi_{R}^{2m} +4 \nabla (\Delta u) \nabla \psi_{R}^{2m} + \Delta^{2} \psi_{R}^{2m} \langle x, \nabla u \rangle \bigr) \bigr] \,dx \biggr\vert \\ & \quad\leq \int_{A^{\beta R}_{\alpha R}} \bigl\vert \Delta^{2} u \bigr\vert \bigl( R^{-1} \bigl\vert \nabla(\Delta u) \bigr\vert \psi_{R}^{m-1} + R^{-2} \vert \Delta u \vert \psi_{R}^{m-2} + R^{-3} \vert \nabla u \vert \psi_{R}^{m-3} \bigr) \,dx \\ & \quad\leq \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl(\Delta^{2} u\bigr)^{2} \,dx \biggr)^{\frac{1}{2}} \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl( R^{-1} \bigl\vert \nabla(\Delta u) \bigr\vert \psi_{R}^{m-1} + R^{-2} \vert \Delta u \vert \psi_{R}^{m-2} \\& \qquad {}+ R^{-3} \vert \nabla u \vert \psi_{R}^{m-3} \bigr)^{2} \,dx \biggr)^{\frac{1}{2} } \\ & \quad\leq C \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl(\Delta^{2} u\bigr)^{2} \,dx \biggr)^{\frac{1}{2}} \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl(R^{-2} \bigl\vert \nabla(\Delta u) \bigr\vert ^{2} \psi_{R}^{2m-2} + R^{-4} \vert \Delta u \vert ^{2} \psi _{R}^{2m-4} \\ & \qquad {}+ R^{-6} \vert \nabla u \vert ^{2} \psi_{R}^{2m-6} \bigr) \,dx \biggr)^{\frac{1}{2} }. \end{aligned}$$
(3.30)

Similarly, we also obtain

$$\begin{aligned}& \biggl\vert \int_{B_{\beta R}} \Delta^{2} u \nabla \bigl(\bigl\langle x, \nabla(\Delta u)\bigr\rangle \bigr) \nabla\psi_{R}^{2m} \,dx \biggr\vert \\& \quad = \biggl\vert \int_{B_{\beta R}} \Delta^{2} u \bigl(\nabla(\Delta u)\nabla \psi_{R}^{2m} + x_{i} (\Delta u)_{ij} \bigl(\psi_{R}^{2m}\bigr)_{j} \bigr) \,dx \biggr\vert \\ & \quad\leq C_{m} \int _{A^{\beta R}_{\alpha R}} \bigl\vert \Delta^{2} u \bigr\vert \bigl(R^{-1} \bigl\vert \nabla(\Delta u) \bigr\vert \psi_{R}^{2m-1} + \bigl\vert (\Delta u)_{ij} \bigr\vert \psi_{R}^{2m-1} \bigr) \,dx \\ & \quad\leq C \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl(\Delta^{2} u\bigr)^{2} \,dx \biggr)^{\frac{1}{2}} \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl(R^{-1} \bigl\vert \nabla(\Delta u) \bigr\vert \psi_{R}^{2m-1} + \bigl\vert (\Delta u)_{ij} \bigr\vert \psi_{R}^{2m-1} \bigr)^{2} \,dx \biggr)^{\frac{1}{2}} \\ & \quad\leq C \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl(\Delta^{2} u\bigr)^{2} \,dx \biggr)^{\frac{1}{2}} \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl( R^{-2} \bigl\vert \nabla(\Delta u) \bigr\vert ^{2} \psi_{R}^{4m-2} + \bigl(( \Delta u)_{ij} \bigr)^{2} \psi_{R}^{4m-2} \bigr) \,dx \biggr)^{\frac{1}{2}}. \end{aligned}$$
(3.31)

Integrating by parts and using Young’s inequality, we obtain

$$\begin{aligned}& \int_{A^{\beta R}_{\alpha R}} \bigl[ R^{-2} \bigl\vert \nabla(\Delta u) \bigr\vert ^{2} \psi _{R}^{4m-2} + \bigl(( \Delta u)_{ij} \bigr)^{2} \psi_{R}^{4m-2} \bigr] \,dx \\& \quad\leq \int_{B_{\beta R}} \bigl[ R^{-2} \bigl\vert \nabla(\Delta u) \bigr\vert ^{2} \psi _{R}^{4m-2} + \bigl(( \Delta u)_{ij} \bigr)^{2} \psi_{R}^{4m-2} \bigr] \,dx \\& \quad= \int_{B_{\beta R}} \bigl( \Delta^{2} u\bigr)^{2} \psi_{R}^{4m-2} \,dx+ \int_{B_{\beta R}} \Delta^{2} u \nabla(\Delta u ) \nabla \bigl(\psi_{R}^{4m-2}\bigr) \,dx \\& \qquad {}+ \int_{B_{\beta R}} \bigl\vert \nabla(\Delta u ) \bigr\vert ^{2} \biggl[ R^{-2} \psi_{R}^{4m-2} + \frac{1}{2}\Delta \bigl(\psi_{R}^{4m-2}\bigr) \biggr] \,dx \\& \quad \leq C_{m} \int_{B_{\beta R}} \bigl( \Delta^{2} u\bigr)^{2} \psi_{R}^{2m} \,dx + C_{m} R^{-2} \int_{B_{\beta R}} \bigl\vert \nabla(\Delta u ) \bigr\vert ^{2} \psi_{R}^{2m-2}\,dx. \end{aligned}$$
(3.32)

From (3.31) and (3.32), we obtain

$$\begin{aligned}& \biggl\vert \int_{B_{\beta R}} \Delta^{2} u \nabla \bigl( \bigl\langle x, \nabla(\Delta u) \bigr\rangle \bigr) \nabla\psi_{R}^{2m} \,dx \biggr\vert \\& \quad\leq C \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl(\Delta^{2} u\bigr)^{2} \,dx \biggr)^{\frac{1}{2}} \biggl( \int _{B_{\beta R}} \bigl(\bigl( \Delta^{2} u \bigr)^{2} \psi_{R}^{2m} + R^{-2} \bigl\vert \nabla (\Delta u ) \bigr\vert ^{2} \psi_{R}^{2m-2} \bigr) \,dx \biggr)^{\frac{1}{2}}. \end{aligned}$$
(3.33)

The sixth term on the right hand side of (3.18) yields

$$\begin{aligned}& \biggl\vert \int_{B_{\beta R}} \Delta^{2} u \bigl( \Delta\bigl( \psi_{R}^{2m}\bigr) \Delta \bigl(\langle x, \nabla u \rangle \bigr) +2 \nabla\bigl(\Delta\bigl(\psi_{R}^{2m}\bigr)\bigr) \nabla \bigl( \langle x, \nabla u \rangle \bigr) \bigr) \,dx \biggr\vert \\& \quad= \biggl\vert \int_{B_{\beta R}} \Delta^{2} u \bigl( \bigl\langle x, \nabla (\Delta u)\bigr\rangle \Delta\bigl(\psi_{R}^{2m}\bigr)+ 2 \Delta u \Delta\bigl(\psi_{R}^{2m}\bigr) \\& \qquad {}+2 \nabla u \nabla \bigl(\Delta\bigl(\psi_{R}^{2m}\bigr)\bigr)+ 2 x_{i} u_{ij} \bigl( \Delta\bigl(\psi_{R}^{2m} \bigr) \bigr)_{j} \bigr) \,dx \biggr\vert \\& \quad\leq C \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl(\Delta^{2} u\bigr)^{2} \,dx \biggr)^{\frac{1}{2}} \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl( R^{-2} \bigl\vert \nabla(\Delta u) \bigr\vert ^{2} \psi_{R}^{2m-2} + R^{-4} (\Delta u )^{2} \psi_{R}^{2m-4} \\& \qquad {}+ R^{-6} \vert \nabla u \vert ^{2} \psi_{R}^{2m-6} + R^{-4} \bigl\vert \nabla^{2} u \bigr\vert ^{2} \psi_{R}^{4m-6} \bigr) \,dx \biggr)^{\frac{1}{2}}. \end{aligned}$$
(3.34)

The last term on the right hand side of (3.18) can be estimated as

$$\begin{aligned}& \int_{B_{\beta R}} \Delta^{2} u \Delta \bigl( \nabla \bigl( \langle x, \nabla u \rangle \bigr) \nabla\bigl(\psi_{R}^{2m} \bigr) \bigr) \,dx \\& \quad= \int_{B_{\beta R}} \Delta ^{2} u \bigl( 3 \nabla(\Delta u) \nabla\bigl(\psi_{R}^{2m}\bigr) + \nabla u \nabla \bigl( \Delta\bigl(\psi_{R}^{2m}\bigr)\bigr) + 2\times \nabla(u_{i}) \times\nabla \bigl(\psi _{R}^{2m} \bigr)_{i} \bigr) \,dx \\& \qquad{}+ \int_{B_{\beta R}} \Delta^{2} u \bigl( x_{i} \times (\Delta u )_{ij} \times \bigl( \psi_{R}^{2m} \bigr)_{j} + u_{ij}\times \bigl\{ x_{i} \bigl( \Delta\bigl(\psi_{R}^{2m}\bigr) \bigr)_{j} + 2 \bigl(\psi_{R}^{2m}\bigr)_{ij} \bigr\} \bigr) \,dx \\& \qquad{}+ 2 \int_{B_{\beta R}} x_{i} \Delta^{2} u \times u_{ijk} \times \bigl(\psi _{R}^{2m} \bigr)_{jk} \,dx. \end{aligned}$$

By Hölder’s inequality and Young’s inequality, we get

$$\begin{aligned}& \biggl\vert \int_{B_{\beta R}} \Delta^{2} u \Delta \bigl( \nabla \bigl( \langle x, \nabla u\rangle \bigr) \nabla\bigl(\psi_{R}^{2m} \bigr) \bigr) \,dx \biggr\vert \\& \quad\leq C \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl(\Delta^{2} u\bigr)^{2} \,dx \biggr)^{\frac{1}{2}} \\& \qquad{}\times \biggl( \int_{B_{\beta R}} \bigl(R^{-2} \bigl\vert \nabla(\Delta u) \bigr\vert ^{2} \psi_{R}^{4m-2} + R^{-6} \vert \nabla u \vert ^{2} \psi _{R}^{4m-6} +( \Delta u)_{ij}^{2} \times\psi_{R}^{4m-2} \\& \qquad{}+ R^{-4} \bigl\vert \nabla ^{2} u \bigr\vert ^{2} \times\psi_{R}^{4m-6} + R^{-2} \bigl\vert \nabla^{3} u \bigr\vert ^{2} \times\psi_{R}^{4m-4} \bigr) \,dx \biggr)^{\frac{1}{2}} \\& \quad\leq C \biggl( \int_{A^{\beta R}_{\alpha R}} \bigl(\Delta^{2} u\bigr)^{2} \,dx \biggr)^{\frac{1}{2}} \biggl( \int_{B_{\beta R}} \bigl( \bigl(\Delta ^{2} u\bigr)^{2} \psi_{R}^{2m}+ \mathbf{B}(u,\psi_{R}, m) \\& \qquad {}+ R^{-2} \bigl\vert \nabla^{3} u \bigr\vert ^{2} \psi ^{2m-2}_{R} \bigr) \,dx \biggr)^{\frac{1}{2}}. \end{aligned}$$
(3.35)

From hypothesis \(H_{1}\), one has \((\theta+1) F(s)\leq f(s)s, \forall s\in \mathbb {R}\). Using the latter inequality, (3.25) and \(1<\theta< p_{s}(n,4)\), we get

$$\begin{aligned} \int_{B_{\beta R}} F(u) \bigl\langle \nabla\psi^{2m}_{R} , x \bigr\rangle \,dx=o(1)\quad \mbox{as } R\rightarrow+ \infty. \end{aligned}$$
(3.36)

From (3.18), (3.25)-(3.36), and \(1<\theta< p_{s}(n,4)\), we obtain

$${ \int_{\mathbb {R}^{n}}} \bigl(\Delta^{2} u\bigr)^{2} \,dx=\frac{2n}{n-8} { \int_{\mathbb {R}^{n}}} F(u) \,dx. $$

Now, multiplying equation (1.1) by \(u\psi_{R}^{2m}\) and integrating by parts, we get

$$\begin{aligned}& \int_{B_{2R}} \bigl(\bigl(\Delta^{2} u \bigr)^{2}\psi_{R}^{2m} - f(u)u \psi_{R}^{2m} \bigr)\,dx\\& \quad=- \int_{B_{2R}} \Delta^{2} u \bigl(2\Delta u\Delta\bigl( \psi _{R}^{2m}\bigr)+4 u_{ij} \bigl( \psi_{R}^{2m}\bigr)_{ij}+ 4\nabla(\Delta u)\nabla \bigl(\psi _{R}^{2m}\bigr)\\& \qquad{}+4\nabla u\nabla\bigl(\Delta\bigl( \psi_{R}^{2}m\bigr)\bigr)+u\Delta^{2}\bigl( \psi_{R}^{2m}\bigr) \bigr)\,dx. \end{aligned}$$

By the same reasoning as above, we find

$${ \int_{\mathbb {R}^{n}}}\bigl(\Delta^{2} u\bigr)^{2} \,dx = { \int_{\mathbb {R}^{n}}}f(u) u \,dx < \infty. $$

 □

4 Proof of Theorems 2.1, 2.2, 2.3, 2.4 and 2.5

Proof of Theorem 2.1

The proof of Theorem 2.1 for the case \(k=1,2,3\) is exactly the same as in [5, 6, 8]. Now, we prove the case \(k=4\). Let u be a stable solution to (1.1).

Subcritical case: \(1<\theta<p_{s}(n,4)\) . By Proposition 3.1, there exists \(C>0\) such that

$$\int_{B_{R}}|u|^{\theta+1} \,dx \leq CR^{n- 8\frac{\theta+1}{\theta-1}}, \quad \forall R>0. $$

Note that

$$n- 8\frac{\theta+1}{\theta-1}=n-8-\frac{16}{\theta-1}< 0, \quad \forall \theta\in \bigl(1, p_{s}(n,4) \bigr). $$

Then, if \(1<\theta<p_{s}(n,4)\), after sending \(R\rightarrow\infty\), we get \(u\equiv0\) in \(\mathbb {R}^{n}\).

Critical case: \(\theta=\frac{n+8}{n-8}\) . By Proposition 3.1, we have

$${ \int_{\mathbb {R}^{n}}} \bigl(\bigl(\Delta^{2} u \bigr)^{2} + \vert u \vert ^{\theta+1} \bigr)\,dx < +\infty. $$

So,

$$\begin{aligned} \lim_{R \rightarrow+ \infty} \int_{A_{R}} \bigl(\bigl(\Delta^{2} u \bigr)^{2} + \vert u \vert ^{\theta+1} \bigr)\,dx=0. \end{aligned}$$
(4.1)

Moreover, if we come back to the proof of Proposition 3.1, we may improve the following integral estimates:

$$\begin{aligned} \int_{B_{R}} \bigl(\bigl(\Delta^{2} u \bigr)^{2} + \vert u \vert ^{\theta+1} \bigr) \,dx \leq C \int_{A_{R}}\bigl(\Delta^{2} u\bigr)^{2} \,dx + C R^{-8} \int_{A_{R}} u^{2} \,dx. \end{aligned}$$

By Hölder’s inequality, we have

$$\begin{aligned} \int_{B_{R}} \bigl(\bigl(\Delta^{2} u \bigr)^{2} + \vert u \vert ^{\theta+1} \bigr) \,dx \leq& C \int_{A_{R}}\bigl(\Delta^{2} u\bigr)^{2} \,dx + C R^{n{\frac{\theta-1}{\theta +1}}-8}\times \biggl( \int_{A_{R}} \vert u \vert ^{\theta+1} \,dx \biggr)^{\frac {2}{\theta+1}} \\ \leq& C \int_{A_{R}}\bigl(\Delta^{2} u\bigr)^{2} \,dx + C \biggl( \int_{A_{R}} \vert u \vert ^{\theta+1} \,dx \biggr)^{\frac{2}{\theta+1}}. \end{aligned}$$

Using (4.1), we get

$${ \int_{\mathbb {R}^{n}}} \vert u \vert ^{\theta+1} \,dx =0. $$

This implies that \(u\equiv0\) in \(\mathbb {R}^{n}\). □

Proof of Theorem 2.2

We now collect (3.19) and (3.20). By assumption \(H_{3}\), if u is not identically zero, then

$$\begin{aligned} \int_{\mathbb {R}^{n}} \bigl\vert D^{k} u \bigr\vert ^{2} \,dx =& \frac{2n}{n-2k} \int_{\mathbb {R}^{n}} F(u)\,dx \geq (1+\alpha_{0}) \int_{\mathbb {R}^{n}}f(u)u \,dx\\ > & \int_{\mathbb {R}^{n}}f(u)u \,dx = \int_{\mathbb {R}^{n}} \bigl\vert D^{k} u \bigr\vert ^{2} \,dx. \end{aligned}$$

This is a contradiction. Then \(u\equiv0\). The proof of Theorem 2.2 is thus completed. □

Proof of Theorem 2.3

The proof of Theorem 2.3 is similar to proof of Proposition 4 in [6]. Let \(\gamma\in [1, 2\theta-1+2\sqrt{\theta(\theta-1)})\). Multiply equation (1.1) by \(|u|^{\gamma-1}u \varphi_{R}^{2}\) and integrate by parts to find

$$\begin{aligned}& \int_{B_{2R}} f(u) u \vert u \vert ^{\gamma-1} \varphi_{R}^{2} \,dx \\ & \quad= \frac{4 \gamma }{(\gamma+1)^{2}} \int_{B_{2R}} \bigl|\nabla\bigl( \vert u \vert ^{\frac{\gamma -1}{2}}u \bigr)\bigr|^{2}\varphi_{R}^{2} \,dx -\frac{1}{\gamma+1} \int_{B_{2R}} \vert u \vert ^{\gamma +1} \Delta \bigl( \varphi_{R}^{2} \bigr) \,dx. \end{aligned}$$
(4.2)

The function \(|u|^{\frac{\gamma-1}{2}}u \varphi_{R} \in C^{1}_{c}(\mathbb {R}^{n})\), and thus it can be used as a test function in the quadratic form \(Q_{u}\). Hence, the stability assumption on u gives

$$\begin{aligned}& \int_{B_{2R}} f'(u) \vert u \vert ^{\gamma+1} \varphi_{R}^{2} \,dx \\& \quad\leq \int_{B_{2R}} \bigl\vert \nabla\bigl( \vert u \vert ^{\frac{\gamma-1}{2}}u\bigr) \bigr\vert ^{2}\varphi_{R}^{2} \,dx + \int_{B_{2R}} \vert u \vert ^{\gamma+1} \vert \nabla \varphi_{R} \vert ^{2} \,dx - \frac{1}{2} \int_{B_{2R}} \vert u \vert ^{\gamma+1} \Delta \bigl( \varphi_{R}^{2} \bigr) \,dx. \end{aligned}$$

Using (4.2) in the latter, we obtain

$$\begin{aligned}& \int_{B_{2R}} \biggl\{ \bigl(f'(u)u^{2} - \theta f(u) u \bigr) |u|^{\gamma -1} + \biggl( \frac{4 \gamma\theta}{(\gamma+1)^{2}} -1 \biggr)\bigl| \nabla \bigl(|u|^{\frac{\gamma-1}{2}}u\bigr)\bigr|^{2} \biggr\} \varphi_{R}^{2} \,dx \\& \quad\leq C_{1}(\gamma , \theta) \int_{B_{2R}} |u|^{\gamma+1} \Delta \bigl( \varphi_{R}^{2} \bigr) \,dx + \int_{B_{2R}} |u|^{\gamma+1} |\nabla\varphi_{R}|^{2} \,dx, \end{aligned}$$

where \(C_{1}(\gamma, \theta)= (\frac{\theta}{\gamma+1} - \frac{1}{2} )\). By hypothesis \(H_{1}\), we obtain

$$\begin{aligned}& \biggl( \frac{4 \gamma\theta}{(\gamma+1)^{2}} -1 \biggr) \int_{B_{2R}} \bigl\vert \nabla\bigl( \vert u \vert ^{\frac{\gamma-1}{2}}u\bigr) \bigr\vert ^{2}\varphi_{R}^{2} \,dx \\& \quad\leq C_{1}(\gamma, \theta) \int_{B_{2R}} \vert u \vert ^{\gamma+1} \Delta \bigl( \varphi_{R}^{2} \bigr) \,dx + \int_{B_{2R}} \vert u \vert ^{\gamma+1} \vert \nabla \varphi_{R} \vert ^{2} \,dx. \end{aligned}$$

Since \(\theta>1\) and \(\gamma\in[ 1, 2\theta-1+2\sqrt{\theta(\theta -1)})\), we have \(\frac{4 \gamma\theta}{(\gamma+1)^{2}} -1>0\) and

$$\begin{aligned} \int_{B_{2R}} \bigl\vert \nabla\bigl( \vert u \vert ^{\frac{\gamma-1}{2}}u \bigr) \bigr\vert ^{2}\varphi_{R}^{2} \,dx \leq C(\gamma, \theta) \int_{B_{2R}} \vert u \vert ^{\gamma+1} \bigl( \bigl\vert \Delta \bigl(\varphi_{R}^{2} \bigr) \bigr\vert + \vert \nabla\varphi_{R} \vert ^{2} \bigr)\,dx. \end{aligned}$$

Using again (4.2), we get

$${ \int_{B_{2R}}} f(u) u \vert u \vert ^{\gamma-1} \varphi_{R}^{2} \,dx \leq C'(\gamma, \theta) { \int_{B_{2R}}} \vert u \vert ^{\gamma+1} \bigl( \vert \nabla\varphi_{R} \vert ^{2} + \bigl\vert \Delta \bigl( \varphi_{R}^{2} \bigr) \bigr\vert \bigr)\,dx. $$

First, we replace \(\varphi_{R}\) by \(\varphi_{R}^{m}\) in the latter inequality, for any \(m>2\), we derive

$$\begin{aligned} \int_{B_{2R}} f(u) u \vert u \vert ^{\gamma-1} \varphi_{R}^{2m} \,dx \leq& C(\gamma, \theta,m) \int_{B_{2R}} \vert u \vert ^{\gamma+1} \varphi_{R}^{2m-2} \bigl( \vert \nabla \varphi_{R} \vert ^{2} + \vert \Delta\varphi_{R} \vert \bigr) \,dx \\ \leq& \frac {C}{R^{2}} \int_{B_{2R}} \vert u \vert ^{\gamma+1} \varphi_{R}^{2m-2}\,dx. \end{aligned}$$

By \(H_{1}\) and \(H_{2}\), we get

$${ \int_{B_{2R}}} \vert u \vert ^{\theta+\gamma} \varphi_{R}^{2m} \,dx \leq \frac{C}{R^{2}} \int_{B_{2R}} \vert u \vert ^{\gamma+1} \varphi_{R}^{2m-2} \,dx. $$

An application of Young’s inequality yields

$${ \int_{B_{2R}}} \vert u \vert ^{\theta+\gamma} \varphi_{R}^{2m} \,dx \leq C R^{n- 2\frac{\theta+ \gamma}{\theta-1}}+ \frac{\gamma+1}{\gamma+\theta } { \int_{B_{2R}}} \vert u \vert ^{\gamma+\theta} \varphi _{R}^{(2m-2)\frac{\gamma+\theta}{\gamma+1}}\,dx. $$

Thus

$${ \int_{B_{R}}} \vert u \vert ^{\theta+\gamma} \,dx \leq C' R^{n- 2\frac {\theta+ \gamma}{\theta-1}}. $$

As in Farina’s work we readily deduce, by letting \(R\to+\infty\), that there is no nontrivial stable solution of (1.1), in the special case \(1< \theta<p_{c}(n)\). □

Proof of Theorem 2.4

We proceed as in the proof of Proposition 2.1. From (3.11) and (3.13), we deduce by replacing \(f(u)\) by \(-m u+ \lambda |u|^{\theta-1}u-\mu|u|^{p-1}u\) that

$$\begin{aligned}& (1-\epsilon) \int_{B_{2R}}\bigl(\Delta^{2} u\bigr)^{2} \varphi_{R}^{2m} \,dx- \int _{B_{2R}}\bigl(-m u^{2} + \lambda \vert u \vert ^{\theta+1}-\mu \vert u \vert ^{p+1}\bigr)\varphi_{R}^{2m} \,dx \\& \quad\leq C_{\epsilon}R^{-8} \int_{B_{2R}}u^{2}\varphi_{R}^{2m-8} \,dx \end{aligned}$$
(4.3)

and

$$\begin{aligned}& \int_{B_{2R}}\bigl(-m u^{2} + \theta\lambda \vert u \vert ^{\theta+1}-p \mu \vert u \vert ^{p+1}\bigr) \varphi_{R}^{2m} \,dx \\& \quad\leq (1+\epsilon) \int_{B_{2R}} \bigl(\varphi_{R}^{m} \Delta^{2} u \bigr)^{2}+ C_{\epsilon}R^{-8} \int_{B_{2R}} u^{2} \varphi_{R}^{2m-8} \,dx. \end{aligned}$$
(4.4)

Multiplying (4.3) by θ and combining it with (4.4), we derive

$$\begin{aligned}& m(\theta-1) \int_{B_{2R}} u^{2} \varphi_{R}^{2m} \,dx + \mu(\theta-p) \int _{B_{2R}} \vert u \vert ^{p+1} \varphi_{R}^{2m} \,dx\\& \qquad{}+\bigl[\theta(1-\epsilon)-(1+\epsilon ) \bigr] \int_{B_{2R}}\bigl(\Delta^{2} u\bigr)^{2} \varphi_{R}^{2m} \,dx\\& \quad\leq C R^{-8} \int _{B_{2R}}u^{2}\varphi_{R}^{2m-8} \,dx. \end{aligned}$$

For ϵ sufficiently small, we deduce

$$\begin{aligned}& m(\theta-1) \int_{B_{2R}} u^{2} \varphi_{R}^{2m} \,dx + \mu(\theta-p) \int _{B_{2R}} \vert u \vert ^{p+1} \varphi_{R}^{2m}\,dx + \int_{B_{2R}}\bigl(\Delta^{2} u\bigr)^{2} \varphi _{R}^{2m} \,dx \\& \quad\leq C R^{-8} \int_{B_{2R}}u^{2}\varphi_{R}^{2m-8} \,dx. \end{aligned}$$
(4.5)

Proof of 1. If \(m>0\) and \(\theta\geq p\), then from (4.5), we deduce that

$$\begin{aligned} \int_{B_{R}} u^{2} \,dx \leq C R^{-8} \int_{B_{2R}}u^{2} \,dx. \end{aligned}$$

Let \(J(R):= {\int_{B_{R}}} u^{2} \,dx \). If we iterate the above inequality, then we get

$$\begin{aligned} J(R)\leq C R^{-8(k+1)} J\bigl(2^{k+1} R\bigr). \end{aligned}$$
(4.6)

We deduce from the boundedness of u that the right hand side of (4.6) is of order \(R^{M}\) with \(M= -8 (k+1)+n \rightarrow0\) as \(k\rightarrow+ \infty\). Hence, we can choose k large enough such that \(M<0\). Then it follows from (4.6) that \(J(R)\rightarrow 0, \mbox{as} R \rightarrow+\infty\). So we get

$${ \int_{\mathbb {R}^{n}}} u^{2} \,dx=0. $$

Then \(u \equiv0\).

Proof of 2. If \(\theta> p\), \(m\geq0\), then from (4.5) and by Young’s inequality, we get

$$\begin{aligned} \int_{B_{2R}} \vert u \vert ^{p+1} \varphi_{R}^{2m} \,dx + \int_{B_{2R}}\bigl(\Delta^{2} u\bigr)^{2} \varphi_{R}^{2m} \,dx \leq\frac{2}{p+1} \int_{B_{2R}} \vert u \vert ^{p+1}\varphi _{R}^{(p+1)(m-4)} \,dx+CR^{n-8\frac{p+1}{p-1}}. \end{aligned}$$

Choosing \(2m=(p+1)(m-4)\), thus

$${ \int_{B_{2R}}} \vert u \vert ^{p+1} \varphi_{R}^{2m} \,dx+ { \int_{B_{2R}}}\bigl(\Delta^{2} u\bigr)^{2} \varphi_{R}^{2m} \,dx\leq CR^{n-8\frac{p+1}{p-1}}. $$

Consequently

$${ \int_{B_{R}}} \vert u \vert ^{p+1} \,dx+ { \int _{B_{R}}}\bigl(\Delta^{2} u\bigr)^{2} \,dx \leq C R^{n-8\frac{p+1}{p-1}} . $$

The result then follows in a similar way to that in the proof of Theorem 2.1. This completes the proof of Theorem 2.4. □

Proof of Theorem 2.5

We can proceed as in the proof of Proposition 3.4, we get

$${ \int_{\mathbb {R}^{n}}} \bigl\vert D^{k} u \bigr\vert ^{2}=\frac{2n}{n-2k} { \int_{\mathbb {R}^{n}}} \biggl( - \frac{m}{2} u^{2} + \frac{\lambda}{\theta+1} \vert u \vert ^{\theta+1} - \frac{\mu}{p+1} \vert u \vert ^{p+1} \biggr) $$

and

$${ \int_{\mathbb {R}^{n}}} \bigl\vert D^{k} u \bigr\vert ^{2}= { \int_{\mathbb {R}^{n}}} \bigl( - m u^{2} + \lambda \vert u \vert ^{\theta+1} - \mu \vert u \vert ^{p+1} \bigr). $$

Thus

$$\begin{aligned}& \frac{2mk}{n-2k} { \int_{\mathbb {R}^{n}}} u^{2} \,dx + \lambda \biggl( 1- \frac{2n}{(n-2k)(\theta+1) } \biggr) { \int_{\mathbb {R}^{n}}} \vert u \vert ^{\theta+1} \,dx \\& \quad{}+\mu \biggl( \frac{2n}{(n-2k)(p +1) } -1 \biggr) { \int_{\mathbb {R}^{n}}} \vert u \vert ^{p+1} \,dx = 0. \end{aligned}$$

This concludes the proof of Theorem 2.5. □