1 Introduction

Let \(I=(a,b)\), \(-\infty\leq a< b\leq\infty\), \(1\leq p, q\leq\infty\), \(\frac{1}{p}+\frac{1}{p'}=1\), and \(\frac{1}{q}+\frac{1}{q'}=1\). Let \(u\geq0\) and \(\rho>0\) be weight functions such that \(u\in L_{q}^{\mathrm {loc}}\) and \(\rho^{-1}\equiv\frac{1}{\rho}\in L_{p'}^{\mathrm {loc}}\), where \(L_{p}\equiv L_{p}(I)\) stands for the space of measurable functions f on I with finite norm

$$\Vert f\Vert _{p}=\left \{ \textstyle\begin{array}{l@{\quad}l} (\int_{a}^{b} \vert f(t)\vert ^{p}\,dt )^{\frac{1}{p}}, & 1\leq p < \infty, \\ \operatorname {ess\,sup}_{t\in I}\vert f(t)\vert , & p=\infty. \end{array}\displaystyle \right . $$

Let \(\operatorname {AC}(I)\) be the set of all functions locally absolutely continuous on I. Let AC (I) be the set of functions from \(\operatorname {AC}(I)\) with compact supports on I.

We consider the following Hardy inequality in the differential form

u f q C ρ f p ,f AC (I).
(1)

In [1] it is shown that if

$$ \int_{a}^{c} \rho^{-p'}(s)\,ds=\infty\quad \mbox{and}\quad \int_{c}^{b} \rho^{-p'}(s)\, ds=\infty $$
(2)

for some \(c\in I\), then inequality (1) does not hold. In the case

$$ \int_{a}^{c} \rho^{-p'}(s)\,ds< \infty\quad \mbox{and}\quad \int_{c}^{b} \rho^{-p'}(s)\, ds=\infty $$
(3)

or

$$ \int_{a}^{c} \rho^{-p'}(s)\,ds=\infty\quad \mbox{and}\quad \int_{c}^{b} \rho^{-p'}(s)\, ds< \infty, $$
(4)

then inequality (1) is satisfied for all functions \(f\in \operatorname {AC}(I)\) such that \(f(a)=0\) or \(f(b)=0\), respectively. For example, in case (3), it is equivalent to the weighted integral Hardy inequality (see [1])

$$ \biggl( \int_{a}^{b}\biggl\vert u(x) \int_{a}^{x}f(s)\,ds\biggr\vert ^{q}\, dx \biggr)^{\frac{1}{q}}\leq C \biggl( \int_{a}^{b}\bigl\vert v(t)f(t)\bigr\vert ^{p}\,dt \biggr)^{\frac{1}{p'}}, $$
(5)

which has been studied for all values of the parameters \(0< p,q\leq \infty\) (see [2, 3], and [4]).

In [1] it is also shown that in the last case

$$ \bigl\Vert \rho^{-1}\bigr\Vert _{p'}< \infty, $$
(6)

inequality (1) is satisfied for all functions \(f\in \operatorname {AC}(I)\) such that \(f(a)=0\) and \(f(b)=0\), that is, it is an overdetermined case. This case is studied in [1, 2], and [4].

In the present work, for \(1\leq p\leq q\leq\infty\), we establish a criterion for the validity of inequality (1) with an estimate of the type

$$ B(u,\rho)\leq C\leq C_{1} B(u,\rho) $$
(7)

for the least constant C in (1), where \(B(u,\rho)\) is some functional depending on u and ρ. Moreover, we present a calculation formula for the least value of \(C_{1}\) and its two-sided estimate.

We suppose that only condition (2) does not hold. In case (3) or (4), our criterion coincides with the well-known Muckenhoupt result. However, our upper estimate in (7) is worse than the known one (see [24], and Remark 3.2 further). In case (6), our criterion is given in terms different from those in [1, 2], and [4]. The terms in [4] are close to ours, but the comparison analysis shows that our results and an estimate of type (7) are better than in [4] (see Remark 3.3).

At the end of the paper, we find a criterion for the compactness of the set M={uf:f AC (I), ρ f p 1} in \(L_{q}(I)\).

2 Auxiliary statements

Lemma 2.1

Let \(1< q<\infty\) and \(\varphi(\lambda)=\frac{\lambda^{q}}{\lambda ^{q}-1}-\frac{1}{\lambda-1}\), \(\lambda>1\). There exists a point \(\lambda _{1}\equiv\lambda_{1}(q)\) such that

$$ \lambda_{1}(2)=\frac{1+\sqrt{5}}{2},\quad\quad \frac {2q}{q+1}< \lambda_{1}(q)< \min\{q,2\} \quad \textit{for } q\neq2, $$
(8)

and

$$ \varphi(\lambda_{1})=\frac{\lambda_{1}^{q}}{\lambda _{1}^{q}-1}- \frac{1}{\lambda_{1}-1}=0. $$
(9)

In addition, \(\frac{\lambda^{q}}{\lambda^{q}-1}<\frac{1}{\lambda-1}\) for \(1<\lambda<\lambda_{1}\) and \(\frac{\lambda^{q}}{\lambda^{q}-1}>\frac{1}{\lambda-1}\) for \(\lambda>\lambda_{1}\).

Proof

Since

$$\varphi(\lambda)=\frac{1}{(\lambda^{q}-1)(\lambda-1)}\bigl(\lambda ^{q+1}-2 \lambda^{q}+1\bigr), $$

the sign of the function φ is defined by the value of the function \(d(\lambda)=\lambda^{q+1}-2\lambda^{q}+1\). Moreover, \(\varphi (\lambda)=0\), \(\lambda>1\), if and only if \(d(\lambda)=0\).

For \(q=2\), we have \(d(\lambda)=\lambda^{3}-2\lambda^{2}+1=(\lambda -1)(\lambda^{2}-\lambda-1)\). This means that \(d(\lambda)=0\) for \(\lambda =\frac{1+\sqrt{5}}{2}\).

Let \(q\neq2\). Let \(\lambda=1+\varepsilon\), \(\varepsilon>0\). Using the Lagrange finite-increment formula, we have

$$\varphi(\lambda)=\frac{(1+\varepsilon)^{q}}{(1+\varepsilon)^{q}-1}-\frac {1}{\varepsilon}\geq \frac{(1+\varepsilon)^{q}}{q\varepsilon(1+\varepsilon)^{q-1}}- \frac {1}{\varepsilon}=\frac{1}{q\varepsilon}\bigl(\varepsilon-(q-1)\bigr). $$

This gives that \(\varphi(\lambda)=\varphi(1+\varepsilon)\geq0\) for \(\varepsilon\geq q-1\), that is, \(\varphi(\lambda)>0\) for \(\lambda>q\).

Let us find an extremum of the function d for \(\lambda>1\). We have that \(d'(\lambda)=(q+1)\lambda^{q}-2q\lambda^{q-1}=\lambda ^{q-1}((q+1)\lambda-2q)\). This gives that \(d'(\lambda)=0\) for \(\lambda =\frac{2q}{q+1}\), \(d'(\lambda)>0\) for \(\lambda>\frac{2q}{q+1}\), and \(d'(\lambda)<0\) for \(1<\lambda<\frac{2q}{q+1}\). Therefore, the function \(d(\lambda)\) decreases for \(1<\lambda\leq\frac{2q}{q+1}\) and increases for \(\lambda>\frac{2q}{q+1}\). Moreover, it has a minimum at \(\frac {2q}{q+1}\). Since \(d(2)=1>0\), \(d(\lambda)>0\) for \(\lambda\geq2\). Hence, \(\varphi(\lambda)>0\) for \(\lambda>2\).

Thus,

$$ \varphi(\lambda)>0 \quad \mbox{for } \lambda>\min\{ q,2\}. $$
(10)

Since \(d(1)=0\) and d has a minimum at \(\frac{2q}{q+1}\), it follows that \(d (\frac{2q}{q+1} )<0\) for \(\lambda>1\) and \(d(\lambda )<0\) for \(1<\lambda\leq\frac{2q}{q+1}\). Therefore, \(\varphi (\frac {2q}{q+1} )<0\), and

$$ \varphi(\lambda)< 0 \quad \mbox{for } 1< \lambda\leq \frac{2q}{q+1}. $$
(11)

In view of the continuity of φ for \(\lambda>1\), from (10) and (11) there follows the existence of a point that satisfies (8) and (9).

The last statement of Lemma 2.1 follows from the intersection of graphs of two decreasing and concave upward functions \(\frac{\lambda ^{q}}{\lambda^{q}-1}\) and \(\frac{1}{\lambda-1}\) at the point \(\lambda =\lambda_{1}\). The proof of Lemma 2.1 is complete. □

Lemma 2.2

Let \(1< q<\infty\) and \(f(\lambda)=\frac{\lambda(\lambda^{q}-1)^{\frac {1}{q}}}{\lambda-1}\), \(\lambda>1\). Then

$$ f\bigl(\lambda_{1}(2)\bigr)= \biggl(\frac{3\sqrt{5}+7}{\sqrt{5}-1} \biggr)^{\frac{1}{2}}, \quad\quad \inf_{\lambda>1}f(\lambda)=f( \lambda_{1})= \frac{\lambda_{1}^{2}}{(\lambda_{1}-1)^{\frac{1}{q'}}}, $$
(12)

and, for \(q\neq2\), we have the estimate

$$ \gamma_{0}< f(\lambda_{1})< \min\{ \gamma_{1},\gamma_{2},4\}, $$
(13)

where \(\gamma_{0}=\frac{2q}{q+1} (\frac{2q}{q+1} )^{\frac {1}{q}} (\frac{2q}{q-1} )^{\frac{1}{q'}}\), \(\gamma_{1}=\frac {2q}{q+1}q^{\frac{1}{q}} (\frac{2q}{q-1} )^{\frac{1}{q'}}\), and \(\gamma_{2}=qq^{\frac{1}{q}} (q' )^{\frac{1}{q'}}\).

Proof

By Lemma 2.1 for \(q=2\) we have \(\lambda_{1}(2)=\frac{1+\sqrt {5}}{2}\), so that \(f(\lambda_{1}(2))= (\frac{3\sqrt{5}+7}{\sqrt {5}-1} )^{\frac{1}{2}}\).

Let \(q\neq2\). The function f is continuous when \(\lambda>1\), and \(\lim_{\lambda\rightarrow1+}f(\lambda)=\infty\) and \(\lim_{\lambda \rightarrow\infty}f(\lambda)=\infty\). Therefore, it has a minimum. Since \(f'(\lambda)=\frac{(\lambda^{q}-1)^{\frac{1}{q}}}{\lambda-1} (\frac {\lambda^{q}}{\lambda^{q}-1}-\frac{1}{\lambda-1} )\), by Lemma 2.1 we have that \(f'(\lambda_{1})=0\), \(f'(\lambda)<0\) for \(1<\lambda<\lambda _{1}\), and \(f'(\lambda)>0\) for \(\lambda>\lambda_{1}\), that is, the function f decreases for \(1<\lambda<\lambda_{1}\), increases for \(\lambda>\lambda _{1}\), and has a minimum at \(\lambda=\lambda_{1}\). Thus, \(\inf_{\lambda >1}f(\lambda)=f(\lambda_{1})\). Again by Lemma 2.1 we have that \(\frac {\lambda_{1}^{q}}{\lambda_{1}^{q}-1}=\frac{1}{\lambda_{1}-1}\). Substituting this equality into the expression of \(f(\lambda_{1})\), we get (12).

The function \(g(x)=\frac{\lambda^{2}}{(\lambda-1)^{\frac{1}{q'}}}\) has a minimum at the point \(\lambda=\frac{2q}{q+1}\). Therefore,

$$ f(\lambda_{1})=g(\lambda_{1})>g \biggl( \frac {2q}{q+1} \biggr)= \frac{2q}{q+1} \biggl(\frac{2q}{q+1} \biggr)^{\frac{1}{q}} \biggl(\frac {2q}{q-1} \biggr)^{\frac{1}{q'}}. $$
(14)

By Lemma 2.1 we have that \(\frac{2q}{q+1}<\lambda_{1}<\min\{q,2\}\). Hence,

$$ f(\lambda_{1})< \min \biggl\{ f \biggl(\frac {2q}{q+1} \biggr), f(q),f(2) \biggr\} . $$
(15)

It is easy to see that \(f(2)<4\). Since \(\lambda_{1}< q\), we have \(\frac {q^{q}}{q^{q}-1}>\frac{1}{q-1}\) or \(q(q-1)^{\frac{1}{q}}>(q^{q}-1)^{\frac {1}{q}}\). Therefore,

$$ f(q)=\frac{q(q^{q}-1)^{\frac{1}{q}}}{q-1}< \frac {q^{2}}{(q-1)^{\frac{1}{q'}}}=qq^{\frac{1}{q}} \bigl(q'\bigr)^{\frac{1}{q'}}. $$
(16)

Let us estimate \(f (\frac{2q}{q+1} )\):

$$ \begin{aligned}[b] f \biggl(\frac{2q}{q+1} \biggr)&=\frac{2q}{q-1} \biggl[ \biggl(1+ \frac {q-1}{q+1} \biggr)^{q}-1 \biggr]^{\frac{1}{q}}\leq \frac{2q}{q-1} \biggl[q\frac{q-1}{q+1} \biggl(\frac{2q}{q+1} \biggr)^{q-1} \biggr]^{\frac{1}{q}} \\ &= \frac{2q}{q-1}q^{\frac{1}{q}} \biggl(\frac{q-1}{q+1} \biggr)^{\frac{1}{q}} \biggl(\frac{2q}{q+1} \biggr)^{\frac{1}{q'}}= \frac{2q}{q+1}q^{\frac{1}{q}} \biggl(\frac{2q}{q-1} \biggr)^{\frac{1}{q'}}. \end{aligned} $$
(17)

From (14), (15), (16), and (17), taking into account that \(f(2)<4\), we have (13). The proof of Lemma 2.2 is complete. □

3 Main results

Let \(a< c< b\), \(d=d(a,c,b)=\min\{c-a, b-c\}\). Assume that

$$\begin{aligned}& A_{p,q}(c)=\sup_{0< h< d}\frac{\Vert u\Vert _{q,(c-h,c+h)}}{ (\Vert \rho^{-1}\Vert ^{-p}_{p',(a,c-h)} +\Vert \rho^{-1}\Vert ^{-p}_{p',(c+h,b)} )^{\frac {1}{p}}}, \quad 1\leq p< \infty, \\& A_{p,q}(c)=\sup_{0< h< d}\frac{\Vert u\Vert _{q,(c-h,c+h)}}{\Vert \rho^{-1}\Vert ^{-1}_{1,(a,c-h)} +\Vert \rho^{-1}\Vert ^{-1}_{1,(c+h,b)}}, \quad p=\infty, \end{aligned}$$

and

$$A_{p,q}=\sup_{c\in I}A_{p,q}(c). $$

Theorem 3.1

Let \(1\leq p\leq q<\infty\). Inequality (1) holds if and only if \(A_{p,q}<\infty\). Moreover, for the least constant C in (1), we have the estimate

$$ A_{p,q}\leq C\leq f(\lambda_{1})A_{p,q}. $$
(18)

In turn, for \(f(\lambda_{1})\), by Lemma  2.2 we have \(f(\lambda _{1}(2))= (\frac{3\sqrt{5}+7}{\sqrt{5}-1} )^{\frac{1}{2}}\) and the estimate \(\gamma_{0}< f(\lambda_{1})<\min\{\gamma_{1},\gamma_{2},4\}\) for \(q\neq2\).

Proof

Necessity. Let inequality (1) hold with the least constant \(C>0\).

Suppose that \(1< p<\infty\). Let \(c\in I\), \(0< h< d\), and \(a<\alpha <c-h<c+h<\beta<b\). We introduce the following function:

$$f_{c,h}(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} \int_{\alpha}^{t}\rho^{-p'}(s)\,ds (\int_{\alpha}^{c-h} \rho ^{-p'}(s)\,ds )^{-1}, & \alpha\leq t\leq c-h, \\ 1, & c-h\leq t\leq c+h,\\ \int_{t}^{\beta}\rho^{-p'}(s)\,ds (\int_{c+h}^{\beta} \rho ^{-p'}(s)\,ds )^{-1} , & c+h\leq t\leq\beta, \\ 0, & t\in I\setminus(\alpha,\beta). \end{array}\displaystyle \right . $$

It is obvious that f c , h AC (I). Substituting \(f_{c,h}\) into (1), we get

$$\Vert u\Vert _{q,(c-h,c+h)}\leq C \bigl(\bigl\Vert \rho ^{-1} \bigr\Vert ^{-p}_{p',(\alpha,c-h)} +\bigl\Vert \rho^{-1}\bigr\Vert ^{-p}_{p',(c+h,\beta)} \bigr)^{\frac{1}{p}}. $$

From the last inequality, taking into account that its left-hand side does not depend on α, β such that \(a<\alpha<\beta<b\), we have

$$ \Vert u\Vert _{q,(c-h,c+h)}\leq C \bigl(\bigl\Vert \rho^{-1}\bigr\Vert ^{-p}_{p',(a,c-h)} +\bigl\Vert \rho^{-1}\bigr\Vert ^{-p}_{p',(c+h,b)} \bigr)^{\frac{1}{p}} $$
(19)

for all \(c\in I\) and \(0< h< d\).

In the case \(p=1\), we construct f in the following way. Let numbers c and h be defined as before, \(\delta>0\), and \(a< x-\delta< x+\delta \leq c-h< c+h\leq y-\delta< y+\delta< b\). Assume that

$$f_{c,h}(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} \int_{x-\delta}^{t}\rho^{-1}(s)\,ds (\int_{x-\delta}^{x+\delta} \rho ^{-1}(s)\,ds )^{-1}, & x-\delta\leq t\leq x+\delta, \\ 1, & x+\delta\leq t\leq y-\delta,\\ \int_{t}^{y+\delta}\rho^{-1}(s)\,ds (\int_{y-\delta}^{y+\delta} \rho^{-1}(s)\,ds )^{-1} , & y-\delta\leq t\leq y+\delta, \\ 0, & t\in I\setminus(x-\delta,y+\delta). \end{array}\displaystyle \right . $$

Substituting \(f_{c,h}\) into (1), we get

$$\Vert u\Vert _{q,(x+\delta,y-\delta)}\leq C \biggl[ \biggl(\frac {1}{2\delta} \int_{x-\delta}^{x+\delta} \rho^{-1}(s)\,ds \biggr)^{-1}+ \biggl(\frac{1}{2\delta} \int_{y-\delta}^{y+\delta} \rho^{-1}(s)\, ds \biggr)^{-1} \biggr]. $$

Taking the limit in this inequality as \(\delta\rightarrow0\), we get

$$\Vert u\Vert _{q,(x,y)}\leq C \bigl(\rho(x)+\rho(y) \bigr) $$

for almost all \(x:(a< x\leq c-h)\) and almost all \(y:(c+h\leq y< b)\).

For \(\alpha>1\), there exist points \(x:(a< x\leq c-h)\) and \(y:(c+h\leq y< b)\) such that

$$\frac{\Vert \rho^{-1}\Vert _{\infty,(a,c-h)}}{\alpha}\leq \rho^{-1}(x) \quad \mbox{and} \quad \frac{\Vert \rho^{-1}\Vert _{\infty,(c+h,b)}}{\alpha}\leq \rho^{-1}(y). $$

Then

$$\Vert u\Vert _{q,(x,y)}\leq\alpha C \bigl[\bigl(\bigl\Vert \rho ^{-1}\bigr\Vert _{\infty,(a,c-h)}\bigr)^{-1}+ \bigl(\bigl\Vert \rho^{-1}\bigr\Vert _{\infty,(c+h,b)}\bigr)^{-1} \bigr]. $$

This, together with \(\Vert u\Vert _{q,(x,y)}\geq \Vert u\Vert _{q,(c-h,c+h)}\), yields that

$$\Vert u\Vert _{q,(c-h,c+h)}\leq\alpha C \bigl[\bigl\Vert \rho ^{-1}\bigr\Vert _{\infty,(a,c-h)}^{-1}+ \bigl\Vert \rho^{-1}\bigr\Vert _{\infty,(c+h,b)}^{-1} \bigr]. $$

Since the left-hand side of this inequality does not depend on \(\alpha >1\), letting \(\alpha\rightarrow1\), we get (19) for \(p=1\). Thus, for all \(1\leq p\leq q<\infty\), we have that

$$ A_{p,q}\leq C. $$
(20)

Sufficiency. Let \(A_{p,q}<\infty\) be correct. Let f be a nontrivial function from AC (I). Without loss of generality, we assume that \(f\geq0\). Let \(\lambda>1\). For any integer k, we assume that \(T_{k}=\{t\in I:f(t)>\lambda^{k}\}\), \(\Delta T_{k}=T_{k}\setminus T_{k+1}\). Due to the boundedness of the function f, there exists an integer \(n=n(f)\) such that \(T_{n}\neq\emptyset\) and \(T_{n+1}=\emptyset\). It is obvious that \(I=\bigcup_{k\leq n}T_{k}=\bigcup_{k\leq n}\Delta T_{k}\). The set \(T_{k}\) is open. Therefore, there exists a family of mutually disjoint intervals \(\{J_{j}^{k}\}\), \(J_{j}^{k}=(c_{j}^{k},d_{j}^{k})\), such that \(T_{k}=\bigcup_{j}J_{j}^{k}\). For \(n-1\geq k>-\infty\), we assume that \(M_{j}^{k}=T_{k+1}\cap J_{j}^{k}\). For \(M_{j}^{k}\neq\emptyset\), we define \(\alpha _{j}^{k}=\inf M_{j}^{k}\) and \(\beta_{j}^{k}=\sup M_{j}^{k}\). Then

$$ T_{k+1}\subset\bigcup_{j} \bigl(\alpha_{j}^{k},\beta _{j}^{k} \bigr) \quad \mbox{and} \quad \Delta T_{k}\supset\bigcup _{j}\bigl[\bigl(c_{j}^{k}, \alpha_{j}^{k}\bigr)\cup \bigl(\beta_{j}^{k}, d_{j}^{k}\bigr)\bigr]. $$
(21)

In view of the continuity of the function f, we get that \(f(\alpha _{j}^{k})=f(\beta_{j}^{k})=\lambda^{k+1}\) and \(f(c_{j}^{k})=f(d_{j}^{k})=\lambda^{k}\). Hence,

$$ \lambda^{k}(\lambda-1)=\lambda^{k+1}-\lambda ^{k}= \int_{c_{j}^{k}}^{\alpha_{j}^{k}}f'(s)\,ds=- \int_{\beta_{j}^{k}}^{d_{j}^{k}}f'(s)\,ds. $$
(22)

From (22) by Hölder’s inequality we have that

$$\begin{aligned} &\lambda^{kp}\bigl\Vert \rho^{-1}\bigr\Vert _{p',(c_{j}^{k},\alpha_{j}^{k})}^{-p}\leq\frac{\Vert \rho f'\Vert _{p,(c_{j}^{k},\alpha_{j}^{k})}^{p}}{(\lambda-1)^{p}}, \end{aligned}$$
(23)
$$\begin{aligned} &\lambda^{kp}\bigl\Vert \rho^{-1}\bigr\Vert _{p',(\beta_{j}^{k},d_{j}^{k})}^{-p}\leq\frac{\Vert \rho f'\Vert _{p,(\beta_{j}^{k},d_{j}^{k})}^{p}}{(\lambda-1)^{p}}. \end{aligned}$$
(24)

In view of \(f(t)<\lambda^{k+1}\) for \(t\in\Delta T_{k}\) and \(\lambda ^{qk}=(1-\lambda^{-q})\sum_{i\leq k}\lambda^{qi}\), we have that

$$\begin{aligned} \Vert uf\Vert _{q}^{q}&=\sum _{k\leq n-1}\Vert uf\Vert _{q,\Delta T_{k+1}}^{q}\leq \sum _{k}\lambda^{q(k+2)}\Vert u\Vert _{q,\Delta T_{k+1}}^{q} \\ &\leq\lambda^{q}\bigl(\lambda^{q}-1\bigr) \sum _{k}\Vert u\Vert _{q,\Delta T_{k+1}}^{q}\sum _{i\leq k}\lambda^{qi}= \lambda^{q} \bigl(\lambda^{q}-1\bigr)\sum_{i} \lambda^{qi} \sum_{k\geq i}\Vert u\Vert _{q,\Delta T_{k+1}}^{q} \\ &= \lambda^{q}\bigl(\lambda^{q}-1\bigr)\sum _{i}\lambda^{qi} \Vert u\Vert _{q,T_{i+1}}^{q} \end{aligned}$$

(by (21))

$$\leq \lambda^{q}\bigl(\lambda^{q}-1\bigr)\sum _{i}\lambda^{qi} \sum_{j} \int_{\alpha_{j}^{i}}^{\beta_{j}^{i}}u^{q}(s)\,ds= \lambda^{q}\bigl(\lambda^{q}-1\bigr)\sum _{i}\lambda^{qi} \sum_{j} \Vert u\Vert _{q,(\alpha_{j}^{i},\beta_{j}^{i})}^{q}. $$

Since \(A_{p,q}<\infty\), from (23) and (24), taking into account that \(\frac{q}{p}\geq1\), this gives

$$\begin{aligned} \Vert uf\Vert _{q}^{q}&\leq\lambda^{q}\bigl( \lambda^{q}-1\bigr) A_{p,q}^{q}\sum _{i}\sum_{j} \bigl( \lambda^{pi}\bigl\Vert \rho^{-1}\bigr\Vert _{p',(c_{j}^{i},\alpha _{j}^{i})}^{-p}+\lambda^{pi}\bigl\Vert \rho^{-1}\bigr\Vert _{p',(\beta _{j}^{i},d_{j}^{i})}^{-p} \bigr)^{\frac{q}{p}} \\ &\leq\frac{\lambda^{q}(\lambda^{q}-1)}{(\lambda-1)^{q}} A_{p,q}^{q} \biggl(\sum _{i}\sum_{j} \bigl(\bigl\Vert \rho f'\bigr\Vert _{p,(c_{j}^{i},\alpha_{j}^{i})}^{p}+\bigl\Vert \rho f'\bigr\Vert _{p,(\beta_{j}^{i},d_{j}^{i})}^{p} \bigr) \biggr)^{\frac{q}{p}} \end{aligned}$$

(by the second relation from (21))

$$\leq\frac{\lambda^{q}(\lambda^{q}-1)}{(\lambda-1)^{q}} A_{p,q}^{q} \biggl(\sum _{i} \bigl\Vert \rho f'\bigr\Vert _{p,\Delta T_{i}}^{p} \biggr)^{\frac {q}{p}}\leq\frac{\lambda^{q}(\lambda^{q}-1)}{(\lambda-1)^{q}} A_{p,q}^{q} \bigl\Vert \rho f'\bigr\Vert _{p}^{q}. $$

Therefore,

$$ \Vert uf\Vert _{q}\leq\frac{\lambda (\lambda^{q}-1)^{\frac{1}{q}}}{(\lambda-1)} A_{p,q} \bigl\Vert \rho f'\bigr\Vert _{p}. $$
(25)

Since the left-hand side of this inequality does not depend on \(\lambda >1\), by Lemma 2.2 we have

$$\Vert uf\Vert _{q}\leq f(\lambda_{1}) A_{p,q} \bigl\Vert \rho f'\bigr\Vert _{p}, $$

that is, inequality (1) holds with the estimate \(C\leq f(\lambda _{1}) A_{p,q}\) for the least constant C in (1). This fact, together with (20), gives (18). The proof of Theorem 3.1 is complete. □

Remark 3.1

Let us notice that in [5], for inequality (1), an estimate of the type (18) has been obtained in the case \(1< q=p<\infty\).

Remark 3.2

If (3) or (4) is correct, then by Theorem 3.1 there follows the correctness of the corresponding integral Hardy inequality (see [1]). For example, if (3) holds, then

$$A_{p,q}=\sup_{z\in I} \biggl( \int_{z}^{b}u^{q}(x)\,dx \biggr)^{\frac {1}{q}} \biggl( \int_{a}^{z}v^{-p'}(s)\,ds \biggr)^{\frac{1}{p'}}, $$

where the condition \(A_{p,q}<\infty\) coincides with the Muckenhoupt condition (see [3]), and inequality (1) is equivalent to the integral Hardy inequality (5). However, our upper estimate in (7) is worse than that in the known result (see e.g. [3], Thm. 5). For example, in case (3) with \(p=q=2\), from (12) we have \(A_{p,q}\leq C\leq (\frac{3\sqrt{5}+7}{\sqrt {5}-1} )^{\frac{1}{2}}A_{p,q}\approx3.33 A_{p,q}\), but from Theorem 5 of [3] it follows that \(A_{p,q}\leq C\leq2A_{p,q}\).

Theorem 3.2

Let \(1=p=q\). Inequality (1) holds if and only if \(A_{p,q}<\infty\). Moreover, \(A_{p,q}=C\), where C is the least constant in (1).

Proof

From (25) we have that \(\Vert uf\Vert _{q}\leq\lambda A_{p,q} \Vert \rho f'\Vert _{p}\). Taking \(\lambda\rightarrow1\), we get \(\Vert uf\Vert _{q}\leq A_{p,q} \Vert \rho f'\Vert _{p}\), that is, inequality (1) holds with the estimate \(A_{p,q}\leq C\), which, together with (20), gives \(A_{p,q}=C\). □

Theorem 3.3

Let \(1\leq p\leq q =\infty\). Inequality (1) holds if and only if \(A_{p,q}<\infty\). Moreover, \(A_{p,q}\leq C\leq4A_{p,q}\), where C is the least constant in (1).

Proof

Let \(1\leq p< q =\infty\). The necessity follows from Theorem 3.1. Let us prove the sufficiency. Let \(A_{p,q}<\infty\). For 0f AC (I), we have

$$\begin{aligned} \Vert uf\Vert _{q} &=\sup_{k}\Vert uf\Vert _{q,\Delta T_{k+1}}\leq \lambda^{2}\sup_{k} \lambda^{k}\Vert u\Vert _{q,\Delta T_{k+1}} \\ &\leq \lambda^{2}\sup_{k}\lambda^{k} \Vert u\Vert _{q,T_{k+1}}\leq \lambda^{2}\sup _{k,i}\lambda^{k}\Vert u\Vert _{q,(\alpha _{i}^{k},\beta_{i}^{k})} \\ &\leq \lambda^{2} A_{p,q}\sup_{k,i} \bigl( \lambda^{pk}\bigl\Vert \rho^{-1}\bigr\Vert _{p',(c_{i}^{k},\alpha _{i}^{k})}^{-p}+\lambda^{pk} \bigl\Vert \rho^{-1}\bigr\Vert _{p',(\beta_{i}^{k},d_{i}^{k})}^{-p} \bigr)^{\frac{1}{p}} \\ &\leq \frac{\lambda^{2}}{\lambda-1} A_{p,q}\sup_{k} \bigl\Vert \rho f'\bigr\Vert _{p,\Delta T_{k}}\leq \frac{\lambda^{2}}{\lambda-1} A_{p,q}\bigl\Vert \rho f'\bigr\Vert _{p}, \end{aligned}$$

that is,

$$ \Vert uf\Vert _{q}\leq \inf_{\lambda>1} \frac{\lambda^{2}}{\lambda-1} A_{p,q}\bigl\Vert \rho f'\bigr\Vert _{p}=4A_{p,q}\bigl\Vert \rho f'\bigr\Vert _{p}, $$
(26)

which, as before, means that

$$C \leq4A_{p,q}. $$

Let \(p=q=\infty\).

Sufficiency. From (22) we have

$$\begin{aligned}& \lambda^{k}\bigl\Vert \rho^{-1}\bigr\Vert _{1,(c_{i}^{k},\alpha _{i}^{k})}^{-1}\leq\frac{1}{\lambda-1}\bigl\Vert \rho f'\bigr\Vert _{p,(c_{i}^{k},\alpha_{i}^{k})}, \\& \lambda^{k}\bigl\Vert \rho^{-1}\bigr\Vert _{1,(\beta _{i}^{k},d_{i}^{k})}^{-1}\leq\frac{1}{\lambda-1}\bigl\Vert \rho f'\bigr\Vert _{p,(\beta_{i}^{k},d_{i}^{k})}. \end{aligned}$$

Using these relations instead of (23) and (24), we have

$$\begin{aligned} \Vert uf\Vert _{q}&\leq \lambda^{2} \sup _{k,i}\lambda^{k}\Vert u\Vert _{q,(\alpha _{i}^{k},\beta_{i}^{k})} \leq \lambda^{2} A_{p,q}\sup_{k,i} \bigl( \lambda^{k}\bigl\Vert \rho^{-1}\bigr\Vert _{1,(c_{i}^{k},\alpha _{i}^{k})}^{-1}+\lambda^{k} \bigl\Vert \rho^{-1}\bigr\Vert _{1,(\beta_{i}^{k},d_{i}^{k})}^{-1} \bigr) \\ &\leq \frac{\lambda^{2}}{\lambda-1} A_{p,q}\sup_{k} \bigl\Vert \rho f'\bigr\Vert _{p,\Delta T_{k}}\leq \frac{\lambda^{2}}{\lambda-1} A_{p,q}\bigl\Vert \rho f'\bigr\Vert _{p}. \end{aligned}$$

This gives that

$$\Vert uf\Vert _{q}\leq4A_{p,q}\bigl\Vert \rho f'\bigr\Vert _{p} $$

and

$$C\leq4A_{p,q}. $$

Necessity. Substituting the function \(f_{c,h}\) into (1), we have

$$\Vert u\Vert _{q,(c-h,c+h)}\leq C \bigl(\bigl\Vert \rho ^{-1} \bigr\Vert _{1,(\alpha, c-h)}^{-1}+ \bigl\Vert \rho^{-1} \bigr\Vert _{1,(c+h,\beta)}^{-1} \bigr), $$

which means that

$$A_{p,q}\leq C. $$

Therefore,

$$A_{p,q}\leq C\leq4A_{p,q}. $$

The proof of Theorem 3.3 is complete. □

Remark 3.3

The obtained results can be compared with the results of Theorem 8.2 of [4], where it is proved that, for \(1\leq p\leq q\leq\infty\), the validity of (1) is equivalent to the condition

$$B_{p,q}=\sup_{(c,d)\subset I} \bigl[\Vert u\Vert _{q,(c,d)}, \min\bigl\{ \bigl\Vert \rho^{-1}\bigr\Vert _{p',(d,b)}, \bigl\Vert \rho^{-1}\bigr\Vert _{p',(a,c)}\bigr\} \bigr]< \infty. $$

Moreover, for the least constant C in (1), we have the estimates

$$ 2^{-\frac{1}{p}} B\leq C\leq\inf_{1< \lambda< 2}B, \quad 1\leq q< \infty, $$
(27)

and

$$ 2^{-\frac{1}{p}} B\leq C\leq4B, \quad q=\infty. $$
(28)

It is easy to see that \(A_{p,q}< B_{p,q}\). Moreover, the estimates for the least constant C in (1) obtained in Theorems 3.1 and 3.3 are obviously better than in (27) and (28), respectively.

4 Compactness

Let \(I=(-\infty,+\infty)\) and M={uf:f AC (I), ρ f p 1}.

Let

$$\begin{aligned}& A^{+}_{p,q}(z)=\sup_{h>0}\frac{ (\int_{z}^{z+2h}u^{q}(t)\,dt )^{\frac{1}{q}}}{ (\Vert \rho^{-1}\Vert ^{-p}_{p',(-\infty,z)} +\Vert \rho^{-1}\Vert ^{-p}_{p',(z+2h,\infty)} )^{\frac{1}{p}}}, \\& A^{-}_{p,q}(z)=\sup_{h>0}\frac{ (\int_{z-2h}^{z}u^{q}(t)\,dt )^{\frac{1}{q}}}{ (\Vert \rho^{-1}\Vert ^{-p}_{p',(-\infty,z-2h)} +\Vert \rho^{-1}\Vert ^{-p}_{p',(z,\infty)} )^{\frac{1}{p}}}. \end{aligned}$$

Theorem 4.1

Let \(1\leq p\leq q<\infty\). The set M is relatively compact in \(L_{q}(I)\) if and only if \(A_{p,q}<\infty\) and

$$ \lim_{\vert x\vert \rightarrow \infty}A_{p,q}(x)=0. $$
(29)

Proof

Necessity. Let M be relatively compact in \(L_{q}(I)\). Then by Theorem 3.1 we have that \(A_{p,q}<\infty\). Let \(f_{c,h,\alpha ,\beta}\equiv f_{c,h}\) be the function introduced in the necessary part of Theorem 3.1.

We assume that

$$\begin{aligned}& f^{+}_{z,h,\alpha,\beta}\equiv f_{z+h,h,\alpha,\beta}, \quad\quad f^{-}_{z,h,\alpha ,\beta}\equiv f_{z-h,h,\alpha,\beta}, \\& g^{+}_{z,h,\alpha,\beta}(t)=f^{+}_{z,h,\alpha,\beta}(t) \bigl(\bigl\Vert \rho^{-1}\bigr\Vert _{p',(\alpha,z)}^{-p}+ \bigl\Vert \rho^{-1}\bigr\Vert _{p',(z+2h,\beta)}^{-p} \bigr)^{-\frac{1}{p}}, \\& g^{-}_{z,h,\alpha,\beta}(t)=f^{-}_{z,h,\alpha,\beta}(t) \bigl(\bigl\Vert \rho^{-1}\bigr\Vert _{p',(\alpha,z-2h)}^{-p}+ \bigl\Vert \rho^{-1}\bigr\Vert _{p',(z,\beta)}^{-p} \bigr)^{-\frac{1}{p}}. \end{aligned}$$

Since g z , h , α , β ± AC (I) and \(\Vert \rho(g^{\pm}_{z,h,\alpha,\beta})'\Vert _{p}\leq1\), we have \(g^{\pm}_{z,h,\alpha,\beta}\in M\), and by the Frechet-Kolmogorov theorem [6], p.10 we get

$$\begin{aligned} 0&=\lim_{N\rightarrow\infty}\sup_{f\in M} \biggl( \int_{\vert t\vert >N}\vert uf\vert ^{q}\,dt \biggr)^{\frac{1}{q}}\geq \lim_{N\rightarrow\infty}\sup_{z,h,\alpha,\beta} \biggl( \int _{t>N}\bigl\vert ug^{+}_{z,h,\alpha,\beta}\bigr\vert ^{q}\,dt \biggr)^{\frac{1}{q}} \\ & \geq \lim_{N\rightarrow\infty}\sup_{z>N}\sup _{h>0} \frac{ (\int_{z}^{z+2h}u^{q}(t)\,dt )^{\frac{1}{q}}}{ (\Vert \rho^{-1}\Vert _{p',(-\infty,z)}^{-p}+ \Vert \rho^{-1}\Vert _{p',(z+2h,\infty)}^{-p} )^{\frac {1}{p}}}=\lim_{z\rightarrow\infty}\sup A^{+}_{p,q}(z). \end{aligned}$$

Therefore,

$$ \lim_{z\rightarrow\infty}A^{+}_{p,q}(z)=0. $$
(30)

Similarly, working with the function \(g^{-}_{z,h,\alpha,\beta}\), we get \(\lim_{z\rightarrow-\infty}A^{-}_{p,q}(z)=0\), which, together with (30), gives (29).

Sufficiency. Let \(A_{p,q}<\infty\) and (29) hold. Then, on the basis of Theorem 3.1, the set M is bounded in \(L_{q}(I)\). Therefore, by the Frechet-Kolmogorov theorem it suffices to show that

$$ \lim_{N\rightarrow\infty}\sup_{f\in M} \biggl( \int_{\vert t\vert >N}\vert uf\vert ^{q}\, dt \biggr)^{\frac{1}{q}}=0. $$
(31)

Let

$$\widehat{u}(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} u(t), & t< N, \\ 0, & t\geq N, \end{array}\displaystyle \right . \quad \mbox{and}\quad \widetilde{u}(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} 0, & t\leq N, \\ u(t), & t>N. \end{array}\displaystyle \right . $$

Hence, by Theorem 3.1 we have

$$\begin{aligned}& \biggl( \int_{-\infty}^{\infty} \vert \widehat{u}f\vert ^{q}\, dt \biggr)^{\frac{1}{q}}\leq f(\lambda_{1})\sup _{x< N}A_{p,q}(x) \quad \mbox{for } f\in M, \\& \biggl( \int_{-\infty}^{\infty} \vert \widetilde{u}f\vert ^{q}\, dt \biggr)^{\frac{1}{q}}\leq f(\lambda_{1})\sup _{x>N}A_{p,q}(x)\quad \mbox{for } f\in M. \end{aligned}$$

Then

$$\sup_{f\in M} \biggl( \int_{\vert t\vert >N}\vert uf\vert ^{q}\,dt \biggr)^{\frac{1}{q}}\leq f(\lambda_{1})\sup_{\vert x\vert >N}A_{p,q}(x). $$

This, together with (29), gives (31). The proof of Theorem 4.1 is complete. □