1 Introduction and preliminaries

A measure μ is called a doubling measure, if there exists a positive constant C such that \(\mu(B(x,2l))\leq C\mu(B(x,l))\), for all \(x\in\operatorname{supp} \mu\) and all \(l>0\), which is the main condition in homogeneous spaces. Also μ is a non-doubling measure, if there exists an integer \(k\in(0, n]\) and a positive constant \(C_{0}\), such that

$$ \mu\bigl(B(x, l)\bigr) \leq C_{0}l^{k}. $$
(1.1)

This innovation caused the tremendous development of harmonic analysis (see [18]). It is worthy to mention that this theory solves the Painlevé’s problem and Vitushkin’s conjectures (see [7, 9]). Hytönen [10] introduced the non-homogeneous metric measure spaces \((X,d,\mu)\), which contains the homogeneous spaces and non-doubling measure spaces. Many researchers obtained the boundedness of operators on the non-homogeneous metric measure spaces; see, e.g., [1025].

For multilinear integral operators, the bilinear theory for Calderón-Zygmund operators was studied by Coifman-Meyers [26], then, the boundedness on Lebesgue spaces or Hardy spaces for multilinear singular integrals was proved by Gorafakos-Torres [27, 28]. In non-doubling measure spaces, Xu [29, 30] and Lian-Wu [31] obtained the boundedness of multilinear singular integrals or multilinear fractional integrals and commutators respectively. In non-homogeneous metric measure spaces, Hu et al. [32] established the weighted norm inequalities for multilinear Calderón-Zygmund operators. The authors of [23] proved the boundedness on Lebesgue spaces for commutators of multilinear singular integrals.

In this paper, we introduce multilinear fractional integrals and its commutators on non-homogeneous metric spaces, then we study the boundedness in Lebesgue spaces for these operators, provided that fractional integral is bounded from \(L^{r}(\mu)\) to \(L^{s}(\mu)\), for some \(r\in(1, 1/\beta)\) and \(1/s=1/r-\beta\) with \(0<\beta<1\). Our results include both the results for the homogeneous spaces and the non-doubling measure spaces.

Throughout this paper, \(L_{c}^{\infty}(\mu)\) denotes \(L^{\infty}(\mu)\) with compact support. C always denotes a positive constant independent of the main parameters involved, but it may be different in different currents. And \(p'\) is the conjugate index of p, namely, \(1/p+1/p'=1\). Next let us give some definitions and notations.

Definition 1.1

[10]

A metric space \((X,d)\) is geometrically doubling, if there is a positive integer \(N_{0}\) such that, for all ball \(B(x,r)\subset X\), one can find a finite ball covering \(\{B(x_{j},r/2)\}_{j=1}^{N_{0}}\).

Definition 1.2

[10]

For a metric measure space \((X,d,\mu)\), if μ is a Borel measure on X, and there is a function \(\lambda: X\times(0,+\infty) \rightarrow(0,+\infty)\) and a positive constant \(C_{\lambda}\), such that for all \(x\in X\), the function \(l \longmapsto\lambda(x,l)\) is non-decreasing, and for all \(x\in X\), \(l >0\), the following holds:

$$ \mu\bigl(B(x, l)\bigr)\leq\lambda(x, l)\leq C_{\lambda}\lambda(x, l/2), $$
(1.2)

then \((X,d,\mu)\) is called upper doubling.

Remark 1.3

  1. (i)

    If \(\lambda(x, l)\) equals to \(\mu(B(x,l))\), then the homogeneous spaces is upper doubling spaces. Also, if \(\lambda(x, l)\) equals \(Cl^{k}\), then a metric space \((X,d,\mu)\) satisfying (1.1) is upper doubling.

  2. (ii)

    By [18], we know that there exists another function \(\tilde{\lambda}\leq\lambda\), \(\forall x, y \in X\) with \(d(x, y)\leq l\), and the following holds:

    $$ \tilde{\lambda}(x, l)\leq \widetilde {C}\tilde{\lambda}(y, l). $$
    (1.3)

    Thus one always assumes that λ satisfies (1.3) throughout this paper. Because the singularity of the commutators is stronger than that of the fractional integral, we need to assume \(\lambda(x, al) \geq a^{m}\lambda(x, l)\), for all \(x \in X \) and \(a,l > 0\), in the proof of boundedness of commutators.

  3. (iii)

    The upper doubling condition is equivalent to the weak growth condition introduced by Tan-Li in [33].

A measure μ is \((\alpha, \beta)\)-doubling, if \(\mu(\alpha B)\leq\beta\mu(B)\), for \(\alpha ,\beta\in(1,+\infty)\) and all ball \(B\subset X\). Bui-Duong [11] pointed out that there exist many doubling balls. One always means that \((\alpha,\beta)\)-doubling ball is a \((6,\beta_{0})\)-doubling ball throughout the paper, for some fixed number \(\beta_{0} >\max\{C_{\lambda}^{3\log_{2}6}, 6^{n}\}\), where \(n=\log_{2}N_{0}\) is viewed as a geometric dimension of the space, except α and β are designated.

Definition 1.4

[15]

For \(0\leq\gamma<1\), B and R be two arbitrary balls with \(B\subset R\) and \(N_{B,R}\) be the smallest integer satisfying \(6^{N_{B,R}}l_{B}\geq l_{R}\). One defines

$$ K^{(\gamma)}_{B,R} = 1+\sum_{j=1}^{N_{B,R}} \biggl[\frac{\mu(6^{j}B)}{\lambda(x_{B},6^{j}l_{B})} \biggr]^{(1-\gamma)}. $$
(1.4)

For \(\gamma=0\), one simply writes \(K^{(0)}_{B,R}=K_{B,R}\).

Definition 1.5

Let \(\alpha\in(0,m)\). We call K is an m-linear fractional integral kernel, if

$$ K(\cdot,\ldots,\cdot)\in L_{\mathrm{loc}}^{1} \bigl((X)^{m+1} \backslash\bigl\{ (x,y_{1}\cdots,y_{i},\ldots,y_{m}):x=y_{i}, 1\leq i\leq m\bigr\} \bigr), $$

and the following two items hold:

(i):
$$ \bigl\vert K(x,y_{1},\ldots,y_{i},\ldots, y_{m})\bigr\vert \leq \frac{C}{ [\sum_{i=1}^{m}\lambda(x,d(x,y_{i})) ]^{m-\alpha}}, $$
(1.5)

\(\forall(x,y_{1},\ldots,y_{i},\ldots,y_{m})\in(X)^{m+1}\), with \(x\neq y_{i}\) for some i;

(ii):

there is a constant \(0<\delta\leq1\),

$$\begin{aligned}& \bigl\vert K(x,y_{1},\ldots,y_{i}, \ldots,y_{m})-K\bigl(x',y_{1}, \ldots,y_{i},\ldots ,y_{m}\bigr)\bigr\vert \\& \quad \leq \frac{Cd(x,x')^{\delta}}{ [\sum_{i=1}^{m}d(x,y_{i}) ]^{\delta} [\sum_{i=1}^{m}\lambda(x,d(x,y_{i})) ]^{m-\alpha}}, \end{aligned}$$
(1.6)

if \(Cd(x,x')\leq\max_{1\leq i\leq m}d(x,y_{i})\), and for every i,

$$\begin{aligned}& \bigl\vert K(x,y_{1},\ldots,y_{i}, \ldots,y_{m})-K\bigl(x,y_{1},\ldots,y'_{i}, \ldots ,y_{m}\bigr)\bigr\vert \\& \quad \leq \frac{Cd(y_{i},y'_{i})^{\delta}}{ [\sum_{i=1}^{m}d(x,y_{i}) ]^{\delta} [\sum_{i=1}^{m}\lambda(x,d(x,y_{i})) ]^{m-\alpha}}, \end{aligned}$$
(1.7)

if \(Cd(y_{i},y'_{i})\leq\max_{1\leq i\leq m}d(x,y_{i})\).

For any m compactly supported bounded functions \(f_{1},\ldots,f_{m}\), and any point \(x\notin \bigcap_{i=1}^{m}\operatorname{supp} f_{i}\), the multilinear fractional integral operators \(I_{\alpha,m}\) is defined by

$$\begin{aligned}& I_{\alpha,m}(f_{1},\ldots,f_{m}) (x) \\& \quad = \int_{X^{m}}K(x,y_{1},\ldots,y_{m})f_{1}(y_{1}) \cdots f_{m}(y_{m})\, d\mu(y_{1})\cdots \, d \mu(y_{m}). \end{aligned}$$
(1.8)

Remark 1.6

As \(\max_{1\leq i\leq m}d(x,y_{i})\leq\sum_{i=1}^{m}d(x,y_{i})\leq m\max_{1\leq i\leq m}d(x,y_{i})\), (ii) in Definition 1.5 is equivalent to the following:

(ii′):

There is a constant \(0<\delta\leq1\),

$$\begin{aligned}& \bigl\vert K(x,y_{1},\ldots,y_{i},\ldots,y_{m})-K \bigl(x',y_{1},\ldots,y_{i},\ldots ,y_{m}\bigr)\bigr\vert \\& \quad \leq \frac{Cd(x,x')^{\delta}}{ [\max_{1\leq i\leq m}d(x,y_{i}) ]^{\delta} [\sum_{i=1}^{m}\lambda (x,d(x,y_{i})) ]^{m-\alpha}}, \end{aligned}$$

if \(Cd(x,x')\leq\max_{1\leq i\leq m}d(x,y_{i})\), and for every i,

$$\begin{aligned}& \bigl\vert K(x,y_{1},\ldots,y_{i},\ldots,y_{m})-K \bigl(x,y_{1},\ldots,y'_{i},\ldots ,y_{m}\bigr)\bigr\vert \\& \quad \leq \frac{Cd(y_{j},y'_{i})^{\delta}}{ [\max_{1\leq i\leq m}d(x,y_{i}) ]^{\delta} [\sum_{i=1}^{m}\lambda(x,d(x,y_{i})) ]^{m-\alpha}}, \end{aligned}$$

if \(Cd(y_{i},y'_{i})\leq\max_{1\leq i\leq m}d(x,y_{i})\).

Definition 1.7

[11]

Given \(\rho>1\), \(b\in L_{\mathrm{loc}}^{1}(\mu)\) is an \(\operatorname{RBMO}(\mu)\) function, if there is a positive constant C, for all B, we have

$$ \frac{1}{\mu(\rho B)} \int_{B}\bigl\vert b(x)-m_{\widetilde {B}}b\bigr\vert \, d \mu(x)\leq C, $$
(1.9)

and for all two doubling balls \(B, R\) with \(B\subset R\),

$$ \bigl\vert m_{B}(b)-m_{R}(b)\bigr\vert \leq CK_{B,R}, $$
(1.10)

where is the smallest \((\alpha,\beta)\)-doubling ball with the form \(6^{k}B \), \(k\in{\mathbf{N}}\cup\{0\}\), and

$$m_{\widetilde{B}}(b)=\frac{1}{\mu(\widetilde{B})} \int_{\widetilde {B}}b(x)\,d\mu(x). $$

The \(\operatorname{RBMO}(\mu)\) norm of b, denoted by \(\|b\|_{\ast}\), is the minimal constant C in (1.9) and (1.10).

For \(1\leq j \leq m\), let \(C_{j}^{m}\) be the family of subsets \(\sigma =\{\sigma(1),\sigma(2),\ldots,\sigma(j)\}\) of \(\{1,2,\ldots,m\}\) with j different elements. For each \(\sigma\in C_{j}^{m}\), \(\sigma'=\{1,2,\ldots,m\}\backslash \sigma\). For \(b_{j}\in \operatorname{RBMO}(\mu)\), \(j=1,\ldots,m\), set \(\vec{b}=(b_{1},b_{2},\ldots,b_{m})\), \(\vec{b}_{\sigma}=(b_{\sigma(1)},\ldots ,b_{\sigma(j)})\), \(b_{\sigma}(x)=b_{\sigma(1)}(x)\cdot\cdot\cdot b_{\sigma(j)}(x)\). Denote \(\vec{f}=(f_{1},\ldots,f_{m})\), \(\vec{f}_{\sigma}=(f_{\sigma(1)},\ldots,f_{\sigma(j)})\), and \(\vec{b}_{\sigma'}\vec{f}_{\sigma'}=(b_{\sigma'(j+1)}f_{\sigma '(j+1)},\ldots, b_{\sigma'(m)}f_{\sigma'(m)})\).

Definition 1.8

For \(b_{j}\in \operatorname{RBMO}(\mu)\), \(j=1,\ldots, m\), and multilinear fractional integral operators \(I_{\alpha,m}\), we define the commutators \([\vec{b},I_{\alpha,m}]\) by

$$ [\vec{b},I_{\alpha,m}](\vec{f}) (x)=\sum_{j=0}^{m} \sum_{\sigma\in C_{j}^{m}}(-1)^{m-j}b_{\sigma}(x)I_{\alpha,m}( \vec{f}_{\sigma},\vec {b}_{\sigma'}\vec{f}_{\sigma'}) (x). $$

For \(m=2\),

$$\begin{aligned}{} [b_{1},b_{2},I_{\alpha,2}](f_{1},f_{2}) (x) =&b_{1}(x)b_{2}(x)I_{\alpha ,2}(f_{1},f_{2}) (x)-b_{1}(x)I_{\alpha,2}(f_{1},b_{2}f_{2}) (x) \\ &{}-b_{2}(x)I_{\alpha,2}(b_{1}f_{1},f_{2}) (x)+I_{\alpha ,2}(b_{1}f_{1},b_{2}f_{2}) (x). \end{aligned}$$
(1.11)

\([b_{1},I_{\alpha,2}]\) and \([b_{2},I_{\alpha,2}]\) are defined thus:

$$\begin{aligned}& [b_{1},I_{\alpha,2}](f_{1},f_{2}) (x)=b_{1}(x)I_{\alpha ,2}(f_{1},f_{2}) (x)-I_{\alpha,2}(b_{1}f_{1},f_{2}) (x), \\& [b_{2},I_{\alpha,2}](f_{1},f_{2}) (x)=b_{2}(x)I_{\alpha ,2}(f_{1},f_{2}) (x)-I_{\alpha,2}(f_{1},b_{2}f_{2}) (x). \end{aligned}$$

In this paper, one only considers the case of \(m=2\) for simplicity.

Theorem 1.9

Let \(0<\alpha<2\), \(1< p_{1}\), \(p_{2}<+\infty\), \(0<\frac{1}{q}=\frac {1}{p_{1}}+\frac{1}{p_{2}}-\alpha<1\), \(g_{1}\in L^{p_{1}}(\mu)\) and \(g_{2}\in L^{p_{2}}(\mu)\). If \(I_{\beta}\) is bounded from \(L^{r}(\mu)\) into \(L^{s}(\mu)\), for some \(r\in(1, 1/\beta)\) and \(1/s=1/r-\beta\), with \(0<\beta<1\), then there is a positive constant C,

$$ \bigl\Vert I_{\alpha,2}(g_{1},g_{2})\bigr\Vert _{L^{q}(\mu)}\leq C \|g_{1}\|_{L^{p_{1}}(\mu)}\|g_{2} \|_{L^{p_{2}}(\mu)}, $$

where \(I_{\beta}\) is defined by

$$ I_{\beta} f(x):= \int_{X} \frac{f(y)}{[\lambda(y,d(x,y))]^{1-\beta}} \,d\mu(y). $$

Theorem 1.10

Set \(\|\mu\|=\infty\), \(0<\alpha<2\), \(1< p_{1}\), \(p_{2}<+\infty\), \(0<\frac{1}{q}=\frac {1}{p_{1}}+\frac{1}{p_{2}}-\alpha<1\), \(g_{1}\in L^{p_{1}}(\mu)\), \(g_{2}\in L^{p_{2}}(\mu)\), \(b_{1},b_{2}\in \operatorname{RBMO}(\mu)\) and if \(I_{\beta}\) is bounded from \(L^{r}(\mu)\) into \(L^{s}(\mu )\) for some \(r\in(1, 1/\beta)\), \(1/s=1/r-\beta\) with \(0<\beta<1\), then there is a positive constant C,

$$ \bigl\Vert [b_{1},b_{2},I_{\alpha,2}](g_{1},g_{2}) \bigr\Vert _{L^{q}(\mu)}\leq C \|g_{1}\|_{L^{p_{1}}(\mu)} \|g_{2}\|_{L^{p_{2}}(\mu)}. $$

Remark 1.11

For the case that \(\|\mu\|<\infty\), by Lemma 2.1 in Section 2 below, Theorem 1.10 also holds, if we assume that

$$\begin{aligned}& \int_{X}I_{\alpha,2}(g_{1},g_{2}) (x)\,d\mu(x)=0,\qquad \int_{X}[b_{1},I_{\alpha ,2}](g_{1},g_{2}) (x)\,d\mu(x)=0, \\& \int_{X}[b_{2},I_{\alpha,2}](g_{1},g_{2}) (x)\,d\mu(x)=0\quad \text{and}\quad \int _{X}[b_{1},b_{2},I_{\alpha,2}](g_{1},g_{2}) (x)\,d\mu(x)=0. \end{aligned}$$

This paper is organized as follows. Theorem 1.9 and Theorem 1.10 are proved in Section 2. In Section 3, some applications are stated.

2 Proof of main results

Proof of Theorem 1.9

Let \(\alpha=\alpha _{1}+\alpha_{2}\), \(0<\alpha_{i}<1/p_{i}<1\), \(i=1,2\). It is easy to check that

$$ \prod_{i=1}^{2}\bigl[\lambda \bigl(x,d(x,y_{i})\bigr)\bigr]^{1-\alpha_{i}}\leq \Biggl[\sum _{i=1}^{2}\lambda\bigl(x,d(x,y_{i})\bigr) \Biggr]^{2-\alpha}. $$

Thus

$$\begin{aligned} \bigl\vert I_{\alpha,2}(g_{1},g_{2}) (x)\bigr\vert \leq& C \int_{X^{2}}\frac {\vert g_{1}(y_{1})g_{2}(y_{2})\vert }{ [\sum_{i=1}^{2}\lambda(x,d(x,y_{i})) ]^{2-\alpha}}\,d\mu(y_{1})\,d \mu(y_{2}) \\ \leq& \prod_{i=1}^{2} \int_{X}\frac{\vert g_{i}(y_{i})\vert }{[\lambda (x,d(x,y_{i}))]^{1-\alpha_{i}}}\,d\mu(y_{i}) \\ =& \prod_{i=1}^{2}I_{\alpha_{i}} \bigl(\vert g_{i}\vert \bigr) (x). \end{aligned}$$

Let \(1/q_{i}=1/p_{i}-\alpha_{i}\) and \(1/q_{1}+1/q_{2}=1/q\), \(1< q_{i}<\infty\). It follows from the Hölder’s inequality and the \(L^{p_{i}}(\mu )-L^{q_{i}}(\mu)\) boundedness of \(I_{\alpha_{i}}\), \(i=1,2\), that

$$\begin{aligned}& \bigl\Vert I_{\alpha,2}(g_{1},g_{2})\bigr\Vert _{L^{q}(\mu)} \\& \quad \leq \Biggl\Vert \prod_{i=1}^{2}I_{\alpha_{i}} \bigl(\vert g_{i}\vert \bigr) \Biggr\Vert _{L^{q}(\mu)} \\& \quad \leq \bigl\Vert I_{\alpha_{1}}\bigl(\vert g_{1}\vert \bigr)\bigr\Vert _{L^{q_{1}}(\mu)}\bigl\Vert I_{\alpha _{2}}\bigl(\vert g_{2}\vert \bigr) (x)\bigr\Vert _{L^{q_{2}}(\mu)} \\& \quad \leq \Vert g_{1}\Vert _{L^{p_{1}}(\mu)}\Vert g_{2}\Vert _{L^{p_{2}}(\mu)}. \end{aligned}$$

Thus the proof of Theorem 1.9 is completed. □

In order to prove Theorem 1.10, we need some lemmas.

For \(f \in L_{\mathrm{loc}}^{1}(\mu)\) and \(0<\beta<1\), one defines the sharp maximal operator

$$ M^{\sharp,(\beta)}f(x)=\sup_{B\ni x}\frac{1}{\mu(6B)} \int_{B}\bigl\vert f(y)-m_{\widetilde{B}}(f)\bigr\vert \,d\mu(y) +\sup_{(B,R)\in\Delta_{x}}\frac{\vert m_{B}(f)-m_{R}(f)\vert }{K^{(\beta)}_{B,R}}, $$

here \(\Delta_{x}:=\{(B,R):x\in B\subset R \text{ and } B, R \text{ are doubling balls}\}\).

One defines the non-centered doubling maximal operator

$$Nf(x)=\sup_{B\ni x, B\text{ doubling}}\frac{1}{\mu(B)} \int_{B}\bigl\vert f(y)\bigr\vert \,d\mu(y). $$

It is easy to see

$$ \bigl\vert f(x)\bigr\vert \leq Nf(x), $$

for every \(f\in L^{1}_{\mathrm{loc}}(\mu)\) and μ-a.e. \(x \in X\).

For \(\rho>1\), \(\alpha\in(0,1)\) and \(t\in(1,\infty)\), one defines the non-centered maximal operator \(M^{(\alpha)}_{t,(\rho)}f\) as follows:

$$ M^{(\alpha)}_{t,(\rho)}f(x)=\sup_{B\ni x} \biggl\{ \frac{1}{[\mu(\rho B)]^{1-\alpha t}} \int_{B}\bigl\vert f(y)\bigr\vert ^{t}\,d \mu(y) \biggr\} ^{1/t}. $$

For simplicity, write \(M^{(0)}_{1,(\rho)}f(x)\) as \(M_{(\rho)}f\). If \(\rho\geq5\) and for every \(p>1\), then \(\|M_{(\rho)}f\|_{L^{p}(\mu)}\) \(\leq C\|f\|_{L^{p}(\mu)}\) and for \(p\in(t,1/\alpha)\) and \(1/q=1/p-\alpha\), \(\|M^{(\alpha)}_{t,(\rho)}\|_{L^{q}(\mu)}\leq C\|f\| _{L^{p}(\mu)}\) (see [15]).

Lemma 2.1

[15]

For \(f \in L^{1}_{\mathrm{loc}}(\mu)\), \(\int_{X}f(x)\,d\mu(x)=0\) if \(\|\mu\|<\infty\). Assume \(0<\beta<1\) and \(\inf(1,Nf)\in L^{p}(\mu)\), \(1< p<\infty\), then

$$ \bigl\Vert N(f)\bigr\Vert _{L^{p}(\mu)}\leq C\bigl\Vert M^{\sharp,(\beta)}(f)\bigr\Vert _{L^{p}(\mu)}. $$

Lemma 2.2

[11, 15]

For \(1<\rho<\infty\) and \(1\leq p<\infty\), if \(b\in \operatorname{RBMO}(\mu)\), then for all balls \(B\in X\),

$$ \biggl\{ \frac{1}{\mu(\rho B)} \int_{B}\bigl\vert b_{B}-m_{\widetilde {B}}(b) \bigr\vert ^{p}\,d\mu(X) \biggr\} ^{1/p}\leq C\|b \|_{\ast}. $$
(2.1)

Lemma 2.3

[3]

For \(b\in \operatorname{RBMO}(\mu)\),

$$ \bigl\vert m_{\widetilde{6^{i}\frac{6}{5}B}}(b)-m_{\widetilde {B}}(b)\bigr\vert \leq Ci\|b \|_{\ast}. $$

Lemma 2.4

For \(0<\alpha<2\), \(1< p_{1}, p_{2}, q<\infty\), \(1< r< q\) and \(b_{1}, b_{2}\in \operatorname{RBMO}(\mu)\). If \(I_{\beta}\) is bounded from \(L^{r}(\mu)\) to \(L^{s}(\mu)\), for some \(r\in(1, 1/\beta)\) and \(1/s=1/r-\beta\), with \(0<\beta<1\), then, for every \(x\in X\), \(g_{1}\in L^{p_{1}}(\mu)\), and \(g_{2}\in L^{p_{2}}(\mu)\),

$$\begin{aligned}& M^{\sharp,(\alpha/2)}[b_{1},b_{2},I_{\alpha,2}](g_{1},g_{2}) (x) \\& \quad \leq C \bigl\{ \|b_{1}\|_{\ast}\|b_{2} \|_{\ast}M_{r,(6)}\bigl(I_{\alpha ,2}(g_{1},g_{2}) \bigr) (x) +\|b_{1}\|_{\ast}M_{r,(6)} \bigl([b_{2},I_{\alpha ,2}](g_{1},g_{2}) \bigr) (x) \\& \qquad {}+\|b_{2}\|_{\ast}M_{r,(6)} \bigl([b_{1},I_{\alpha,2}](g_{1},g_{2}) \bigr) (x) +\|b_{1}\|_{\ast}\|b_{2} \|_{\ast}M^{(\alpha /2)}_{p_{1},(5)}g_{1}(x)M_{p_{2},(5)}g_{2}(x) \bigr\} , \end{aligned}$$
(2.2)
$$\begin{aligned}& M^{\sharp,(\alpha/2)}[b_{1},I_{\alpha,2}](g_{1},g_{2}) (x) \\& \quad \leq C \bigl\{ \|b_{1}\|_{\ast}M_{r,(6)} \bigl(I_{\alpha,2}(g_{1},g_{2})\bigr) (x) + \|b_{1}\|_{\ast}M^{(\alpha/2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha /2)}_{p_{2},(5)}g_{2}(x) \bigr\} , \end{aligned}$$
(2.3)
$$\begin{aligned}& M^{\sharp,(\alpha/2)}[b_{2},I_{\alpha,2}](g_{1},g_{2}) (x) \\& \quad \leq C \bigl\{ \|b_{2}\|_{\ast}M_{r,(6)} \bigl(I_{\alpha,2}(g_{1},g_{2})\bigr) (x) + \|b_{2}\|_{\ast}M^{(\alpha/2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha /2)}_{p_{2},(5)}g_{2}(x) \bigr\} . \end{aligned}$$
(2.4)

Proof

Choose \(b_{1}, b_{2}\in L^{\infty}(\mu)\) according to Lemma 3.11 in [14]. As \(L_{c}^{\infty}(\mu)\) is dense in \(L^{p}(\mu)\) for \(1< p<\infty\), by standard density arguments, we only need to consider the case that \(g_{1}, g_{2}\in L_{c}^{\infty}(\mu)\).

Similar to Theorem 9.1 in [6], in order to obtain (2.2), we only need to prove that, for every \(x\in B\),

$$\begin{aligned}& \frac{1}{\mu(6B)} \int_{B}\bigl\vert [b_{1},b_{2}, I_{\alpha,2}](g_{1},g_{2}) (z)-H_{B}\bigr\vert \,d\mu(z) \\& \quad \leq C \bigl\{ \|b_{1}\|_{\ast}\|b_{2} \|_{\ast}M_{r,(6)}\bigl(I_{\alpha ,2}(g_{1},g_{2}) \bigr) (x) +\|b_{1}\|_{\ast}M_{r,(6)} \bigl([b_{2},I_{\alpha ,2}](g_{1},g_{2}) \bigr) (x) \\& \qquad {}+\|b_{2}\|_{\ast}M_{r,(6)} \bigl([b_{1},I_{\alpha,2}](g_{1},g_{2}) \bigr) (x) +C\|b_{1}\|_{\ast}\|b_{2} \|_{\ast}M^{(\alpha/2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha /2)}_{p_{2},(5)}g_{2}(x) \bigr\} , \end{aligned}$$
(2.5)

and, for every ball \(B\subset R\), with \(x\in B\), R is a doubling ball,

$$\begin{aligned} |H_{B}-H_{R}| \leq& CK_{B,R}^{2}K_{B,R}^{(\alpha/2)} \bigl[\|b_{1}\| _{\ast}\|b_{2} \|_{\ast}M_{r,(6)}\bigl(I_{\alpha,2}(g_{1},g_{2}) \bigr) (x) \\ &{}+\|b_{1}\|_{\ast}\|b_{2}\|_{\ast}M^{(\alpha /2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(5)}g_{2}(x) \\ &{}+\|b_{1}\|_{\ast}M_{r,(6)}\bigl([b_{2},I_{\alpha ,2}](g_{1},g_{2}) \bigr) (x) \\ &{}+\|b_{2}\|_{\ast}M_{r,(6)}\bigl([b_{1},I_{\alpha,2}](g_{1},g_{2}) \bigr) (x) \bigr]. \end{aligned}$$
(2.6)

For every ball B, let

$$\begin{aligned}& H_{B}:= m_{B}\bigl(I_{\alpha,2}\bigl( \bigl(b_{1}- m_{\widetilde {B}}(b_{1})\bigr)g_{1} \chi_{X\backslash\frac {6}{5}B},\bigl(b_{2}-m_{\widetilde {B}}(b_{2}) \bigr)g_{2}\chi_{X\backslash\frac{6}{5}B}\bigr)\bigr), \\& H_{R}:= m_{R}\bigl(I_{\alpha,2}\bigl( \bigl(b_{1}- m_{R}(b_{1})\bigr)g_{1} \chi_{X\backslash\frac {6}{5}R},\bigl(b_{2}-m_{R}(b_{2}) \bigr)g_{2}\chi_{X\backslash\frac{6}{5}R}\bigr)\bigr). \end{aligned}$$

It is easy to see that

$$[b_{1},b_{2},I_{\alpha,2}]=I_{\alpha ,2}\bigl( \bigl(b_{1}-b_{1}(z)\bigr)g_{1}, \bigl(b_{2}-b_{2}(z)\bigr)g_{2}\bigr) $$

and

$$\begin{aligned}& I_{\alpha,2}\bigl(\bigl(b_{1}-m_{\widetilde {B}}(b_{1}) \bigr)g_{1},\bigl(b_{2}-m_{\widetilde {B}}(b_{2}) \bigr)g_{2}\bigr) \\& \quad = I_{\alpha,2}\bigl(\bigl(b_{1}-b_{1}(z)+b_{1}(z)-m_{\widetilde {B}}(b_{1}) \bigr)g_{1},\bigl(b_{2}-b_{2}(z)+b_{2}(z)-m_{\widetilde {B}}(b_{2}) \bigr)g_{2}\bigr) \\& \quad = \bigl(b_{1}(z)-m_{\widetilde {B}}(b_{1})\bigr) \bigl(b_{2}(z)-m_{\widetilde {B}}(b_{2})\bigr)I_{\alpha,2}(g_{1},g_{2}) \\& \qquad {}-\bigl(b_{1}(z)-m_{\widetilde {B}}(b_{1}) \bigr)I_{\alpha ,2}\bigl(g_{1},\bigl(b_{2}-b_{2}(z) \bigr)g_{2}\bigr) \\& \qquad {}-\bigl(b_{2}(z)-m_{\widetilde {B}}(b_{2}) \bigr)I_{\alpha ,2}\bigl(\bigl(b_{1}-b_{1}(z) \bigr)g_{1},g_{2}\bigr) \\& \qquad {}+I_{\alpha,2}\bigl(\bigl(b_{1}-b_{1}(z) \bigr)g_{1},\bigl(b_{2}-b_{2}(z) \bigr)g_{2}\bigr). \end{aligned}$$

Thus

$$\begin{aligned}& \frac{1}{\mu(6B)} \int_{B}\bigl\vert [b_{1},b_{2},I_{\alpha ,2}](g_{1},g_{2}) (z)-H_{B}\bigr\vert \,d\mu(z) \\& \quad \leq C \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert \bigl(b_{1}(z)-m_{\widetilde {B}}(b_{1}) \bigr) \bigl(b_{2}(z)-m_{\widetilde {B}}(b_{2}) \bigr)I_{\alpha ,2}(g_{1},g_{2}) (z)\bigr\vert \,d \mu(z) \biggr) \\& \qquad {}+C \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert \bigl(b_{1}(z)-m_{\widetilde {B}}(b_{1}) \bigr)I_{\alpha,2}\bigl(g_{1},\bigl(b_{2}-b_{2}(z) \bigr)g_{2}\bigr) (z)\bigr\vert \,d\mu(z) \biggr) \\& \qquad {}+C \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert \bigl(b_{2}(z)-m_{\widetilde {B}}(b_{2}) \bigr)I_{\alpha,2}\bigl(\bigl(b_{1}-b_{1}(z) \bigr)g_{1},g_{2}\bigr) (z)\bigr\vert \,d\mu(z) \biggr) \\& \qquad {}+C \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert I_{\alpha,2}\bigl( \bigl(b_{1}-m_{\widetilde {B}}(b_{1})\bigr)g_{1}, \bigl(b_{2}-m_{\widetilde {B}}(b_{2})\bigr)g_{2} \bigr) (z)-H_{B}\bigr\vert \,d\mu (z) \biggr) \\& \quad =: F_{1}+F_{2}+F_{3}+F_{4}. \end{aligned}$$
(2.7)

For \(F_{1}\), choose \(r_{1}, r_{2}>1\), such that \(\frac{1}{r}+\frac{1}{r_{1}}+\frac{1}{r_{2}}=1\). It follows from Hölder’s inequality that

$$\begin{aligned} F_{1} \leq& C \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert b_{1}(z)-m_{\widetilde {B}}b_{1} \bigr\vert ^{r_{1}}\,d\mu(z) \biggr)^{1/r_{1}} \\ &{}\times \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert b_{2}(z)-m_{\widetilde {B}}b_{2} \bigr\vert ^{r_{2}}\,d\mu(z) \biggr)^{1/r_{2}} \\ &{}\times \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert I_{\alpha ,2}(g_{1},g_{2}) \bigr\vert ^{r}\,d\mu(z) \biggr)^{1/r} \\ \leq& C\|b_{1}\|_{\ast}\|b_{2} \|_{\ast}M_{r,(6)}\bigl(I_{\alpha,2}(g_{1},g_{2}) \bigr) (x). \end{aligned}$$

For \(F_{2}\), choose \(s>1\) such that \(\frac{1}{s}+\frac{1}{r}=1\), it follows that

$$\begin{aligned} F_{2} \leq& C \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert b_{1}(z)-m_{\widetilde {B}}b_{1} \bigr\vert ^{s}\,d\mu(z) \biggr)^{1/s} \\ &{} \times \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert [b_{2},I_{\alpha ,2}](g_{1},g_{2}) \bigr\vert ^{r}\,d\mu(z) \biggr)^{1/r} \\ \leq& C\|b_{1}\|_{\ast}M_{r,(6)} \bigl([b_{2},I_{\alpha,2}](g_{1},g_{2}) \bigr) (x). \end{aligned}$$

For \(F_{3}\), in the same way, one obtains

$$ F_{3}\leq C\|b_{2}\|_{\ast}M_{r,(6)} \bigl([b_{1},I_{\alpha,2}](g_{1},g_{2}) \bigr) (x). $$

For \(F_{4}\), let \(g_{k}^{1}=g_{k}\chi_{\frac{6}{5}B}\) and \(g_{k}^{2}=g_{k}-g_{k}^{1}\) for \(k=1,2\). Therefore,

$$\begin{aligned} F_{4} \leq& C \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert I_{\alpha,2}\bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{1}^{1}(z),(b_{2}-m_{\widetilde {B}}b_{2})g_{2}^{1} \bigr) (z)\bigr\vert \,d\mu (z) \biggr) \\ &{}+ C \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert I_{\alpha,2}\bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{1}^{1}(z),(b_{2}-m_{\widetilde {B}}b_{2})g_{2}^{2} \bigr) (z)\bigr\vert \,d\mu (z) \biggr) \\ &{}+ C \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert I_{\alpha,2}\bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{1}^{2}(z),(b_{2}-m_{\widetilde {B}}b_{2})g_{2}^{1} \bigr) (z)\bigr\vert \,d\mu (z) \biggr) \\ &{}+ C \biggl(\frac{1}{\mu(6B)} \int_{B}\bigl\vert I_{\alpha,2}\bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{1}^{2}(z),(b_{2}-m_{\widetilde {B}}b_{2})g_{2}^{2} \bigr) (z)-H_{B}\bigr\vert \,d\mu(z) \biggr) \\ =:&F_{41}+F_{42}+F_{43}+F_{44}. \end{aligned}$$

For \(1< p_{i}<\infty\), \(i=1,2\), choose \(s_{1}=\sqrt{p_{1}}\), \(s_{2}=\sqrt {p_{2}}\), \(\frac{1}{v}=\frac{1}{s_{1}}+\frac{1}{s_{2}}-\alpha\), \(\frac {1}{s_{1}}=\frac{1}{p_{1}}+\frac{1}{v_{1}}\) and \(\frac{1}{s_{2}}=\frac{1}{p_{2}}+\frac{1}{v_{2}}\). It follows from Hölder’s inequality and Theorem 1.9 that

$$\begin{aligned} F_{41} \leq& C\frac{\mu(B)^{1-1/v}}{\mu(6B)}\bigl\Vert I_{\alpha,2} \bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{1}^{1},(b_{2}-m_{\widetilde {B}}b_{2})g_{2}^{1} \bigr)\bigr\Vert _{L^{v}(\mu )} \\ \leq& C\frac{1}{\mu(6B)^{1/v}}\bigl\Vert (b_{1}-m_{\widetilde {B}}b_{1})g_{1}^{1} \bigr\Vert _{L^{s_{1}}(\mu)}\bigl\Vert (b_{2}-m_{\widetilde {B}}b_{2})g_{2}^{1} \bigr\Vert _{L^{s_{2}}(\mu)} \\ \leq& C\frac{1}{\mu(6B)^{1/v}} \biggl( \int_{\frac{6}{5}B}\vert b_{1}-m_{\widetilde {B}}b_{1} \vert ^{v_{1}}\,d\mu(z) \biggr)^{1/v_{1}} \biggl( \int_{\frac{6}{5}B}\bigl\vert g_{1}(z)\bigr\vert ^{p_{1}}\,d\mu(z) \biggr)^{1/p_{1}} \\ &{} \times \biggl( \int_{\frac{6}{5}B}\vert b_{2}-m_{\widetilde {B}}b_{2} \vert ^{v_{2}}\,d\mu(z)\biggr)^{1/v_{2}} \biggl( \int_{\frac {6}{5}B}\bigl\vert g_{2}(z)\bigr\vert ^{p_{2}}\,d\mu(z) \biggr)^{1/p_{2}} \\ \leq& C\prod_{i=1}^{2} \biggl( \frac{\int_{\frac{6}{5}B}\vert b_{i}-m_{\widetilde {B}}b_{i}\vert ^{v_{i}}\,d\mu(z)}{\mu(6B)} \biggr)^{1/v_{i}} \biggl(\frac{\int_{\frac{6}{5}B}\vert g_{i}(z)\vert ^{p_{i}}\,d\mu(z)}{\mu (6B)^{1-\alpha p_{i}/2}} \biggr)^{1/p_{i}} \\ \leq& C\Vert b_{1}\Vert _{\ast} \Vert b_{2} \Vert _{\ast}M^{(\alpha /2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(5)}g_{2}(x). \end{aligned}$$

For \(F_{42}\), it follows from (i) of Definition 1.5, Lemmas 2.2-2.3, the condition of \(\lambda(x,al) \geq a^{m}\lambda(x,l)\), and Hölder’s inequality that

$$\begin{aligned} F_{42} \leq& C\frac{1}{\mu(6B)} \int_{B} \int_{X} \int_{X} \frac{\vert b_{1}(y_{1})-m_{\widetilde {B}}b_{1}\vert \vert g_{1}^{1}(y_{1})\vert }{ [\lambda(z,d(z,y_{1}))+\lambda(z,d(z,y_{2}))]^{2-\alpha}} \\ &{} \times\bigl\vert b_{2}(y_{2})-m_{\widetilde {B}}b_{2} \bigr\vert \bigl\vert g_{2}^{2}(y_{2})\bigr\vert \,d\mu (y_{1})\,d\mu(y_{2})\,d\mu(z) \\ \leq& C\frac{1}{\mu(6B)} \int_{B} \int_{\frac{6}{5}B} \bigl\vert b_{1}(y_{1})-m_{\widetilde {B}}b_{1} \bigr\vert \bigl\vert g_{1}(y_{1})\bigr\vert \,d \mu(y_{1}) \\ &{}\times \int_{X\backslash\frac{6}{5}B} \frac{\vert b_{2}(y_{2})-m_{\widetilde {B}}b_{2}\vert \vert g_{2}(y_{2})\vert \,d\mu (y_{2})}{[\lambda(z,d(z,y_{2}))]^{2-\alpha}}\,d\mu(z) \\ \leq& C \biggl(\frac{\int_{\frac{6}{5}B}\vert b_{1}(y_{1})-m_{\widetilde {B}}b_{1}\vert ^{p'_{1}}\,d\mu(y_{1})}{\mu(6B)} \biggr)^{1/p'_{1}} \biggl( \frac{\int_{\frac{6}{5}B}\vert g_{1}(y_{1})\vert ^{p_{1}}\,d\mu(y_{1})}{\mu (6B)^{1-\alpha p_{1}/2}} \biggr)^{1/p_{1}} \\ &{}\times \mu(6B)^{-\alpha/2}\mu(B)\sum_{i=1}^{\infty} \int_{6^{i}\frac {6}{5}B\backslash6^{i-1}\frac{6}{5}B}\frac{\vert b_{2}(y_{2})-m_{\widetilde {B}} b_{2}\vert \vert g_{2}(y_{2})\vert }{[\lambda(x,6^{i-1}\frac{6}{5}l_{B})]^{2-\alpha }}\,d\mu(y_{2}) \\ \leq& C\|b_{1}\|_{\ast}M^{(\alpha/2)}_{p_{1},(5)}g_{1}(x) \sum_{i=1}^{\infty }6^{-km(1-\alpha/2)} \biggl[ \frac{\mu(B)}{\mu(\frac{6}{5}B)} \biggr]^{1-\alpha/2} \biggl[\frac {\mu(\frac{6}{5}B)}{\lambda(x,\frac{6}{5}l_{B})} \biggr]^{1-\alpha/2} \\ &{}\times\frac{1}{[\lambda(x,5\times6^{i}\frac{6}{5}l_{B})]^{1-\alpha/2}} \int_{6^{i}\frac{6}{5}B}\bigl\vert b_{2}(y_{2})-m_{\widetilde {B}} b_{2}\bigr\vert \bigl\vert g_{2}(y_{2})\bigr\vert \,d\mu(y_{2}) \\ \leq& C\|b_{1}\|_{\ast}M^{(\alpha/2)}_{p_{1},(5)}g_{1}(x) \sum_{i=1}^{\infty }6^{-im(1-\alpha/2)} \frac{1}{[\mu(5\times6^{i}\frac{6}{5}B)]^{1-\alpha /2}} \\ &{}\times \int_{6^{i}\frac{6}{5}B} \bigl\vert b_{2}(y_{2})-m_{\widetilde{6^{i}\frac{6}{5}B}}(b_{2})+m_{\widetilde {6^{i}\frac{6}{5}B}}(b_{2})-m_{\widetilde {B}}b_{2} \bigr\vert \bigl\vert g_{2}(y_{2})\bigr\vert \,d\mu (y_{2}) \\ \leq& C\|b_{1}\|_{\ast}M^{(\alpha/2)}_{p_{1},(5)}g_{1}(x) \sum_{i=1}^{\infty }6^{-im(1-\alpha/2)} \\ &{} \times \biggl[ \biggl(\frac{\int_{6^{i}\frac{6}{5}B}\vert b_{2}(y_{2}) -m_{\widetilde{6^{i}\frac{6}{5}B}}(b_{2})\vert ^{p'_{2}}\,d\mu(y_{2})}{\mu (5\times6^{i}\frac{6}{5}B)} \biggr)^{1/p'_{2}} \biggl( \frac{\int_{6^{i}\frac{6}{5}B}\vert g_{2}(y_{2})\vert ^{p_{2}}\,d\mu (y_{2})}{\mu(5\times6^{i}\frac{6}{5}B)^{1-\alpha p_{2}/2}} \biggr)^{1/p_{2}} \\ &{} +C k\|b_{2}\|_{\ast} \biggl(\frac{\int_{6^{k}\frac {6}{5}B}\vert g_{2}(y_{2})\vert ^{p_{2}}\,d\mu(y_{2})}{\mu(5\times6^{i}\frac {6}{5}B)^{1-\alpha p_{2}/2}} \biggr)^{1/p_{2}} \biggl(\frac{\int _{6^{i}\frac{6}{5}B}\,d\mu(y_{2})}{\mu(5\times6^{i}\frac{6}{5}B)} \biggr)^{1/p'_{2}} \biggr] \\ \leq& C\|b_{1}\|_{\ast}\|b_{2} \|_{\ast}M^{(\alpha /2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(5)}g_{2}(x). \end{aligned}$$

In the same way, one obtains

$$ F_{43}\leq C\|b_{1}\|_{\ast}\|b_{2} \|_{\ast}M^{(\alpha /2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(5)}g_{2}(x). $$

For \(F_{44}\), let \(z, z_{0}\in B\), it follows from (ii) of Definition 1.5, Lemmas 2.2-2.3, the condition of λ, and Hölder’s inequality that

$$\begin{aligned}& \bigl\vert I_{\alpha,2}\bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{2}^{2},(b_{2}-m_{\widetilde {B}}b_{2})g_{2}^{2} \bigr) (z) \\& \qquad {}-I_{\alpha,2}\bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{2}^{2},(b_{2}-m_{\widetilde {B}}b_{2})g_{2}^{2} \bigr) (z_{0})\bigr\vert \\& \quad \leq C \int_{X\backslash \frac{6}{5}B} \int_{X\backslash\frac {6}{5}B}\bigl\vert K(z,y_{1},y_{2})-K(z_{0},y_{1},y_{2}) \bigr\vert \\& \qquad {}\times\prod_{j=1}^{2}\bigl\vert \bigl(b_{j}(y_{j})-m_{\widetilde {B}}b_{j} \bigr)g_{j}(y_{j})\bigr\vert \,d\mu(y_{j}) \\& \quad \leq C \int_{X\backslash \frac{6}{5}B} \int_{X\backslash\frac{6}{5}B}\frac{d(z,z_{0})^{\delta} \prod_{j=1}^{2}\vert (b_{j}(y_{j})-m_{\widetilde {B}}b_{j})g_{j}(y_{j})\vert \,d\mu(y_{j})}{ (d(z,y_{1})+d(z,y_{2}))^{\delta}[\sum_{j=1}^{2}\lambda (x,d(x,y_{j}))]^{2-\alpha}} \\& \quad \leq C\prod_{j=1}^{2} \int_{X\backslash \frac{6}{5}B}\frac{d(z,z_{0})^{\delta_{i}} \vert b_{j}(y_{j})-m_{\widetilde {B}}b_{j}\vert \vert g_{j}(y_{j})\vert \,d\mu (y_{j})}{d(z,y_{j})^{\delta_{j}}[\lambda(z,d(z,y_{j}))]^{1-\alpha/2}} \\& \quad \leq C\prod_{j=1}^{2}\sum _{k=1}^{\infty} \int_{6^{k}\frac {6}{5}B\backslash6^{k-1}\frac{6}{5}B}6^{-k\delta_{j}} \biggl[\frac{\mu (5\times6^{k}\frac{6}{5}B)}{ \lambda(z,5\times6^{k}\frac{6}{5}l_{B})} \biggr]^{1-\alpha/2} \\& \qquad {} \times\frac{\vert b_{j}(y_{j})-m_{\widetilde {B}}b_{j}\vert \vert g_{j}(y_{j})\vert \,d\mu(y_{j})}{[\mu(5\times6^{k}\frac{6}{5}B)]^{1-\alpha /2}} \\& \quad \leq C\prod_{j=1}^{2}\sum _{k=1}^{\infty}6^{-k\delta_{j}} \biggl(\frac {\int_{6^{k}\frac{6}{5}B}\vert b_{j}(y_{j})-m_{\widetilde {B}}b_{j}\vert ^{p'_{j}}\,d\mu(y_{j})}{ [\mu(5\times6^{k}\frac{6}{5}B)]^{1-\alpha p_{j}/2}} \biggr)^{1/p'_{j}} \\& \qquad {} \times \biggl(\frac{\int_{6^{k}\frac{6}{5}B}\vert g_{j}(y_{j})\vert ^{p_{j}}\,d\mu (y_{j})}{\mu(5\times6^{k}\frac{6}{5}B)} \biggr)^{1/p_{i}} \\& \quad \leq C\prod_{j=1}^{2}\sum _{k=1}^{\infty}6^{-k\delta_{j}}M_{p_{j},(6)}g_{j}(x) \biggl(\frac{1}{[\mu(5\times6^{k}\frac{6}{5}B)]^{1-\alpha p_{j}/2}} \\& \qquad {} \times \int_{6^{k}\frac{6}{5}B}\bigl\vert b_{j}(y_{j})-m_{\widetilde{6^{k}\frac{6}{5}B}} +m_{\widetilde{6^{k}\frac{6}{5}B}}-m_{\widetilde {B}}b_{j}\bigr\vert ^{p'_{j}} \,d\mu (y_{j}) \biggr)^{1/p'_{j}} \\& \quad \leq C\prod_{j=1}^{2}\sum _{k=1}^{\infty}6^{-k\delta_{j}}k\|b_{j} \|_{\ast }M_{p_{j},(6)}g_{j}(x) \\ & \quad \leq C\|b_{1}\|_{\ast}\|b_{2} \|_{\ast}M^{(\alpha /2)}_{p_{1},(6)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(6)}g_{2}(x), \end{aligned}$$

where \(\delta=\delta_{1}+\delta_{2}\), \(\delta_{1},\delta_{2}>0\).

It follows from taking the mean over \(z_{0}\in B\) that

$$ F_{44}\leq C\|b_{1}\|_{\ast} \|b_{2}\|_{\ast}M^{(\alpha /2)}_{p_{1},(6)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(6)}g_{2}(x). $$
(2.8)

Thus (2.5) is obtained from (2.7) to (2.8).

Now we turn to the proof of (2.6). Set \(N=N_{B,R}+1\). For two balls \(B\subset R\) with \(x\in B\), here R is a doubling ball and B is an every ball,

$$\begin{aligned}& \bigl\vert \bigl\vert m_{B}\bigl[I_{\alpha,2} \bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{1}^{2},(b_{2}-m_{\widetilde {B}}b_{2})g_{2}^{2} \bigr)\bigr]\bigr\vert -\bigl\vert m_{R}\bigl[I_{\alpha ,2} \bigl((b_{1}-m_{R}b_{1})g_{1}^{2},(b_{2}-m_{R}b_{2})g_{2}^{2} \bigr)\bigr]\bigr\vert \bigr\vert \\ & \quad \leq \bigl\vert m_{B}\bigl[I_{\alpha,2} \bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{1}\chi _{X\backslash6^{N}B},(b_{2}-m_{\widetilde {B}}b_{2})g_{2} \chi_{X\backslash 6^{N}B}\bigr)\bigr] \\& \qquad {}-m_{R}\bigl[I_{\alpha,2}\bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{1} \chi_{X\backslash 6^{N}B},(b_{2}-m_{\widetilde {B}}b_{2})g_{2} \chi_{X\backslash6^{N}B}\bigr)\bigr] \bigr\vert \\& \qquad {}+\bigl\vert m_{R}\bigl[I_{\alpha,2} \bigl((b_{1}-m_{R}b_{1})g_{1} \chi_{X\backslash 6^{N}B},(b_{2}-m_{R}b_{2})g_{2} \chi_{X\backslash6^{N}B}\bigr)\bigr] \\& \qquad {}-m_{R}\bigl[I_{\alpha,2}\bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{1} \chi_{X\backslash 6^{N}B},(b_{2}-m_{\widetilde {B}}b_{2})g_{2} \chi_{X\backslash6^{N}B}\bigr)\bigr] \bigr\vert \\& \qquad {}+\bigl\vert m_{B}\bigl[I_{\alpha,2} \bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{1}\chi _{6^{N}B\backslash\frac{6}{5}B},(b_{2}-m_{\widetilde {B}}b_{2})g_{2} \chi _{X\backslash\frac{6}{5}B}\bigr)\bigr]\bigr\vert \\& \qquad {}+\bigl\vert m_{B}\bigl[I_{\alpha,2} \bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{1}\chi _{X\backslash\frac{6}{5}B},(b_{2}-m_{\widetilde {B}}b_{2})g_{2} \chi _{6^{N}B\backslash\frac{6}{5}B}\bigr)\bigr]\bigr\vert \\& \qquad {}+\bigl\vert m_{R}\bigl[I_{\alpha,2} \bigl((b_{1}-m_{R}b_{1})g_{1} \chi_{6^{N}B\backslash \frac{6}{5}R},(b_{2}-m_{R}b_{2})g_{2} \chi_{X\backslash6^{N}B}\bigr)\bigr] \bigr\vert \\& \qquad {}+\bigl\vert m_{R}\bigl[I_{\alpha,2} \bigl((b_{1}-m_{R}b_{1})g_{1} \chi_{X\backslash\frac {6}{5}R},(b_{2}-m_{R}b_{2})g_{2} \chi_{6^{N}B\backslash\frac {6}{5}R}\bigr)\bigr]\bigr\vert \\ & \quad =: G_{1}+G_{2}+G_{3}+G_{4}+G_{5}+G_{6}. \end{aligned}$$
(2.9)

Similar to the estimate of \(F_{44}\),

$$ G_{1}\leq C\|b_{1}\|_{\ast}\|b_{2} \|_{\ast}M^{(\alpha /2)}_{p_{1},(6)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(6)}g_{2}(x). $$

For \(G_{2}\), it is easy to see that

$$\begin{aligned}& I_{\alpha,2}\bigl((b_{1}-m_{R}b_{1})g_{1} \chi_{X\backslash 6^{N}B},(b_{2}-m_{R}b_{2})g_{2} \chi_{X\backslash6^{N}B}\bigr) (z) \\ & \qquad {}-I_{\alpha,2}\bigl((b_{1}-m_{\widetilde {B}}b_{1})g_{1} \chi_{X\backslash 6^{N}B},(b_{2}-m_{\widetilde {B}}b_{2})g_{2} \chi_{X\backslash6^{N}B}\bigr) (z) \\& \quad = (m_{R}b_{2}-m_{\widetilde {B}}b_{2})I_{\alpha ,2} \bigl((b_{1}-m_{R}b_{1})g_{1} \chi_{X\backslash6^{N}B},g_{2}\chi _{X\backslash6^{N}B}\bigr) (z) \\& \qquad {}+(m_{R}b_{1}-m_{\widetilde {B}}b_{1})I_{\alpha,2} \bigl(g_{1}\chi_{X\backslash 6^{N}B},(b_{2}-m_{R}b_{2})g_{2} \chi_{X\backslash6^{N}B}\bigr) (z) \\& \qquad {}+(m_{R}b_{1}-m_{\widetilde {B}}b_{1}) (m_{R}b_{2}-m_{\widetilde {B}}b_{2})I_{\alpha,2}(g_{1} \chi_{X\backslash6^{N}B},g_{2}\chi _{X\backslash6^{N}B}) (z). \end{aligned}$$

Thus

$$\begin{aligned} G_{2} \leq&\biggl\vert (m_{R}b_{2}-m_{\widetilde {B}}b_{2}) \frac{1}{\mu(R)} \int_{R}I_{\alpha,2}\bigl((b_{1}-m_{R}b_{1})g_{1} \chi _{X\backslash6^{N}B},g_{2}\chi_{X\backslash6^{N}B}\bigr) (z)\,d\mu(z) \biggr\vert \\ &{}+\biggl\vert (m_{R}b_{1}-m_{\widetilde {B}}b_{1}) \frac{1}{\mu(R)} \int_{R}I_{\alpha,2}\bigl(g_{1} \chi_{X\backslash 6^{N}B},(b_{2}-m_{R}b_{2})g_{2} \chi_{X\backslash6^{N}B}\bigr) (z)\,d\mu(z) \biggr\vert \\ &{}+\biggl\vert (m_{R}b_{1}-m_{\widetilde {B}}b_{1}) (m_{R}b_{2}-m_{\widetilde {B}}b_{2}) \frac{1}{\mu(R)} \int_{R}I_{\alpha,2}(g_{1} \chi_{X\backslash 6^{N}B},g_{2}\chi_{X\backslash6^{N}B}) (z)\, d\mu(z)\biggr\vert \\ =:&G_{21}+G_{22}+G_{23}. \end{aligned}$$

For \(G_{21}\),

$$\begin{aligned}& I_{\alpha,2}\bigl((b_{1}-m_{R}b_{1})g_{1} \chi_{X\backslash6^{N}R},g_{2}\chi _{X\backslash6^{N}R}\bigr) (z) \\& \quad = I_{\alpha ,2}\bigl((b_{1}-m_{R}b_{1})g_{1},g_{2} \bigr) (z)-T\bigl((b_{1}-m_{R}b_{1})g_{1} \chi _{6^{N}B}\chi_{\frac{6}{5}R},g_{2}\chi_{\frac{6}{5}R} \bigr) (z) \\& \qquad {}-I_{\alpha,2}\bigl((b_{1}-m_{R}b_{1})g_{1} \chi_{\frac{6}{5}R},g_{2}\chi _{6^{N}B}\chi_{\frac{6}{5}R} \bigr) (z) \\& \qquad {}+I_{\alpha,2}\bigl((b_{1}-m_{R}b_{1})g_{1} \chi_{6^{N}B}\chi_{\frac {6}{5}R},g_{2}\chi_{6^{N}B} \chi_{\frac{6}{5}R}\bigr) (z) \\& \qquad {}-I_{\alpha,2}\bigl((b_{1}-m_{R}b_{1})g_{1} \chi_{X\backslash\frac {6}{5}R},g_{2}\chi_{6^{N}B}\bigr) (z) \\& \qquad {}-I_{\alpha,2}\bigl((b_{1}-m_{R}b_{1})g_{1} \chi_{6^{N}B},g_{2}\chi _{X\backslash\frac{6}{5}R}\bigr) (z) \\& \qquad {}+I_{\alpha,2}\bigl((b_{1}-m_{R}b_{1})g_{1} \chi_{6^{N}B\backslash\frac {6}{5}R},g_{2}\chi_{6^{N}B\backslash\frac{6}{5}R}\bigr) (z) \\& \quad =: E_{1}(z)+E_{2}(z)+E_{3}(z)+E_{4}(z)+E_{5}(z)+E_{6}(z)+E_{7}(z). \end{aligned}$$

For \(E_{1}(z)\), it is easy to see that

$$\frac{1}{\mu(R)} \int_{R}\bigl\vert I_{\alpha,2}\bigl(b_{1}-b_{1}(z)g_{1},g_{2} \bigr) (z)\bigr\vert \,d\mu (z)\leq CM_{r,(6)}\bigl([b_{1},I_{\alpha,2}]g_{1},g_{2} \bigr) (x). $$

It follows from Hölder’s inequality that

$$\frac{1}{\mu(R)} \int_{R}\bigl\vert \bigl(b_{1}(z)-m_{R}(b_{1}) \bigr)I_{\alpha ,2}(g_{1},g_{2}) (z)\bigr\vert \,d \mu(z)\leq C\|b_{1}\|_{\ast}M_{r,(6)} \bigl(I_{\alpha ,2}(g_{1},g_{2})\bigr) (x). $$

Therefore

$$\begin{aligned} \bigl\vert m_{R}(E_{1})\bigr\vert \leq& \bigl\vert m_{R}\bigl(I_{\alpha ,2}\bigl(b_{1}-b_{1}(z)g_{1},g_{2} \bigr)\bigr)\bigr\vert +\bigl\vert m_{R}\bigl( \bigl(b_{1}(z)-m_{R}(b_{1})\bigr)I_{\alpha ,2}(g_{1},g_{2}) \bigr)\bigr\vert \\ \leq& C \bigl\{ M_{r,(6)}\bigl([b_{1},I_{\alpha,2}]g_{1},g_{2} \bigr) (x)+\|b_{1}\|_{\ast }M_{r,(6)} \bigl(I_{\alpha,2}(g_{1},g_{2})\bigr) (x) \bigr\} . \end{aligned}$$

For \(E_{2}(z)\), denote \(s_{1}=\sqrt{p_{1}}\), \(s_{2}=p_{2}\), \(\frac{1}{v}=\frac {1}{s_{1}}+\frac{1}{s_{2}}-\alpha\) and \(\frac{1}{s_{1}}=\frac{1}{p_{1}}+\frac {1}{v_{1}}\). Noting that R is a doubling ball, by Theorem 1.9, one obtains

$$\begin{aligned} \bigl\vert m_{R}(E_{2})\bigr\vert \leq& C \frac{\mu(R)^{1-1/v}}{\mu(6R)}\bigl\Vert I_{\alpha ,2}\bigl((b_{1}-m_{R}b_{1})g_{1} \chi_{6^{N}B}\chi_{6/5R},g_{2}\chi_{6/5R} \bigr)\bigr\Vert _{L^{v}(\mu)} \\ \leq& C\mu(6R)^{-1/v}\bigl\Vert (b_{1}-m_{R}b_{1})g_{1} \chi_{6^{N}B}\chi_{6/5R}\bigr\Vert _{L^{s_{1}}(\mu)}\Vert g_{2}\chi_{6/5R}\Vert _{L^{s_{2}}(\mu)} \\ \leq& C\frac{1}{\mu(6R)^{1/v}} \biggl( \int_{\frac {6}{5}R}\vert b_{1}-m_{R}b_{1} \vert ^{v_{1}}\,d\mu(z) \biggr)^{1/v_{1}} \biggl( \int _{\frac{6}{5}R}\bigl\vert g_{1}(z)\bigr\vert ^{p_{1}}\,d\mu(z) \biggr)^{1/p_{1}} \\ &{}\times \biggl( \int_{\frac{6}{5}R}\bigl\vert g_{2}(z)\bigr\vert ^{p_{2}}\,d\mu(z) \biggr)^{1/p_{2}} \\ \leq& C \biggl(\frac{1}{\mu(6R)} \int_{\frac {6}{5}R}\vert b_{1}-m_{R}b_{1} \vert ^{v_{1}}\,d\mu(z) \biggr)^{1/v_{1}} \\ &{}\times\prod_{j=1}^{2} \biggl( \frac{1}{\mu(6R)^{1-\alpha p_{j}/2}} \int _{\frac{6}{5}R}\bigl\vert g_{j}(z)\bigr\vert ^{p_{j}}\,d\mu(z) \biggr)^{1/p_{j}} \\ \leq& C\Vert b_{1}\Vert _{\ast}M^{(\alpha/2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha /2)}_{p_{2},(5)}g_{2}(x). \end{aligned}$$

Also one deduces

$$ \bigl\vert m_{R}(E_{3})\bigr\vert +\bigl\vert m_{R}(E_{4})\bigr\vert \leq C\|b_{1} \|_{\ast}M^{(\alpha/2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha /2)}_{p_{2},(5)}g_{2}(x). $$

For \(E_{5}\), as \(z\in R\), noting that R is a doubling ball, it follows from (i) of Definition 1.5, Lemmas 2.2-2.3, and the conditions of λ that

$$\begin{aligned} \bigl\vert E_{5}(z)\bigr\vert \leq& C \int_{6^{N}B} \int_{X\backslash\frac{6}{5}R}\frac {\vert b_{1}(y_{1})-m_{R}b_{1}\vert \vert g_{1}(y_{1})\vert \vert g_{2}(y_{2})\vert \,d\mu(y_{1})\,d\mu(y_{2})}{ [\sum_{i=1}^{2}\lambda(x,d(x,y_{i}))]^{2-\alpha}} \\ \leq& C \int_{6^{N}B}\bigl\vert g_{2}(y_{2})\bigr\vert \,d\mu(y_{2})\sum_{j=1}^{\infty} \int _{6^{j}\frac{6}{5}R\backslash6^{j-1}\frac{6}{5}R} \frac{\vert b_{1}(y_{1})-m_{R}b_{1}\vert \vert g_{1}(y_{1})\vert }{(\lambda(z,5\times 6^{j}\frac{6}{5}l_{R}))^{2-\alpha}}\,d\mu(y_{1}) \\ \leq& C \int_{6^{N}B}\bigl\vert g_{2}(y_{2})\bigr\vert \,d\mu(y_{2})\sum_{j=1}^{\infty }6^{-jm(1-\alpha/2)} \\ &{}\times \int_{6^{j}\frac{6}{5}R} \frac{1}{[\lambda(z,5\times\frac{6}{5}l_{R})]^{1-\alpha/2}}\frac {\vert b_{1}(y_{1})-m_{R}b_{1}\vert \vert g_{1}(y_{1})\vert \,d\mu(y_{1})}{ [\lambda(z,5\times6^{j}\frac{6}{5}l_{R})]^{1-\alpha/2}} \\ \leq& C\frac{1}{[\lambda(z,6l_{R})]^{1-\alpha/2}} \int _{6^{N}B}\bigl\vert g_{2}(y_{2})\bigr\vert \,d\mu(y_{2})\sum_{j=1}^{\infty}6^{-jm(1-\alpha /2)} \\ &{} \times\frac{1}{[\lambda(z,5\times6^{j}\frac{6}{5}l_{R})]^{1-\alpha /2}}\times \biggl[ \int_{6^{j}\frac{6}{5}R}\bigl\vert b_{1}(y_{1})-m_{6^{j}\frac {6}{5}R}(b_{1}) \bigr\vert \bigl\vert g_{1}(y_{1})\bigr\vert \,d \mu(y_{1}) \\ &{} + \int_{6^{j}\frac{6}{5}R}\bigl\vert m_{6^{j}\frac {6}{5}R}(b_{1})-m_{R}b_{1} \bigr\vert \bigl\vert g_{1}(y_{1})\bigr\vert \,d \mu(y_{1}) \biggr] \\ \leq& C\frac{1}{[\lambda(z,6l_{R})]^{1-\alpha/2}} \int _{6^{N}B}\bigl\vert g_{2}(y_{2})\bigr\vert \,d\mu(y_{2})\sum_{j=1}^{\infty}6^{-jm(1-\alpha /2)} \\ &{} \times \biggl[ \biggl(\frac{1}{\lambda(z,5\times6^{j}\frac {6}{5}l_{R})} \int_{6^{j}\frac{6}{5}R} \bigl\vert b_{1}(y_{1})-m_{6^{j}\frac{6}{5}R}(b_{1}) \bigr\vert ^{p'_{1}}\,d\mu(y_{1}) \biggr)^{1/p'_{1}} \\ &{}\times \biggl(\frac{1}{[\lambda(z,6^{j+1}\frac{6}{5}l_{R})]^{1-\alpha p_{1}/2}} \int_{6^{j}\frac{6}{5}R}\bigl\vert g_{1}(y_{1})\bigr\vert ^{p_{1}}\,d\mu(y_{1}) \biggr)^{1/p_{1}} \\ &{} +j\|b_{1}\|_{\ast}\frac{1}{[\lambda(z,5\times6^{j}\frac {6}{5}l_{R})]^{1-\alpha/2}} \int_{6^{j}\frac{6}{5}R}\bigl\vert g_{1}(y_{1})\bigr\vert \,d\mu (y_{1}) \biggr] \\ \leq& C\|b_{1}\|_{\ast}M^{(\alpha/2)}_{p_{1},(5)}g_{1}(x) \sum_{j=1}^{N_{B,R}}\frac{1}{[\lambda(z,6l_{R})]^{1-\alpha/2}} \\ &{} \times \biggl[ \int_{6^{j+1}B\backslash6^{j}B}\bigl\vert g_{2}(y_{2})\bigr\vert \,d\mu (y_{2})+ \int_{6B}\bigl\vert g_{2}(y_{2})\bigr\vert \,d\mu(y_{2}) \biggr] \\ \leq& C\|b_{1}\|_{\ast}M^{(\alpha/2)}_{p_{1},(5)}g_{1}(x) \sum_{j=1}^{N_{B,R}}\frac{\int_{6^{j+1}B}\vert g_{2}(y_{2})\vert \,d\mu(y_{2})}{[\mu (5\times6^{j+1}B)]^{1-\alpha/2}} \\ &{}\times \biggl[\frac{\mu(5\times6^{j+1}B)}{\lambda(z,5\times 6^{j+1}l_{B})} \biggr]^{1-\alpha/2} \biggl[ \frac{\lambda(z,5\times6^{j}l_{B})}{\lambda(z,6l_{R})} \biggr]^{1-\alpha/2} \\ &{}+C\|b_{1}\|_{\ast}M^{(\alpha/2)}_{p_{1},(5)}g_{1}(x) \frac{1}{[\lambda (z,6l_{R})]^{1-\alpha/2}} \int_{6B}\bigl\vert g_{2}(y_{2})\bigr\vert \,d\mu(y_{2}) \\ \leq& CK^{(\alpha/2)}_{B,R}\|b_{1}\|_{\ast}M^{(\alpha /2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(5)}g_{2}(x). \end{aligned}$$

Therefore

$$ |m_{R}(E_{5})|\leq CK^{(\alpha/2)}_{B,R} \|b_{1}\|_{\ast}M^{(\alpha /2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(5)}g_{2}(x). $$

Similar to the estimate of \(m_{R}(E_{5})\),

$$ \bigl\vert m_{R}(E_{6})\bigr\vert +\bigl\vert m_{R}(E_{7})\bigr\vert \leq CK^{(\alpha/2)}_{B,R} \|b_{1}\|_{\ast}M^{(\alpha /2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(5)}g_{2}(x). $$

By (1.10), it yields

$$\begin{aligned} G_{21} \leq& C \bigl[\|b_{1}\|_{\ast} \|b_{2}\|_{\ast}M_{r,(6)}\bigl(I_{\alpha ,2}(g_{1},g_{2}) \bigr) (x) +\|b_{1}\|_{\ast}M_{r,(6)} \bigl([b_{2},I_{\alpha,2}](g_{1},g_{2}) \bigr) (x) \\ &{}+\|b_{2}\|_{\ast}M_{r,(6)}\bigl([b_{1},I_{\alpha,2}](g_{1},g_{2}) \bigr) (x) +\|b_{1}\|_{\ast}\|b_{2} \|_{\ast}M^{(\alpha /2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(5)}g_{2}(x) \bigr]. \end{aligned}$$

For \(G_{22}\) and \(G_{23}\), they are similar to \(G_{21}\), thus

$$\begin{aligned} G_{2} \leq& C \bigl[\|b_{1}\|_{\ast} \|b_{2}\|_{\ast}M_{r,(6)}\bigl(I_{\alpha ,2}(g_{1},g_{2}) \bigr) (x) +\|b_{1}\|_{\ast}M_{r,(6)} \bigl([b_{2},I_{\alpha,2}](g_{1},g_{2}) \bigr) (x) \\ &{}+\|b_{2}\|_{\ast}M_{r,(6)}\bigl([b_{1},I_{\alpha,2}](g_{1},g_{2}) \bigr) (x) +\|b_{1}\|_{\ast}\|b_{2} \|_{\ast}M^{(\alpha /2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(5)}g_{2}(x) \bigr]. \end{aligned}$$

For \(G_{3}\) to \(G_{6}\), in the same way as \(E_{5}(z)\), it yields

$$ G_{3}+G_{4}+G_{5}+G_{6} \leq C\|b_{1}\|_{\ast}\|b_{2}\|_{\ast}M^{(\alpha /2)}_{p_{1},(5)}g_{1}(x)M^{(\alpha/2)}_{p_{2},(5)}g_{2}(x). $$
(2.10)

Thus (2.6) is obtained from (2.9) to (2.10) and (2.2) is proved. Also, one obtains (2.3) and (2.4) in a similar way to (2.2). Here the details is omitted. Thus Lemma 2.4 is proved. □

Proof of Theorem 1.10

Set \(0<\alpha<2\), \(1< p_{1}, p_{2} <\infty\), \(0<\frac{1}{q}=\frac{1}{p_{1}}+\frac{1}{p_{2}}-\alpha<1\), \(1< r< q\), \(f_{1}\in L^{p_{1}}(\mu)\), \(g_{2}\in L^{p_{2}}(\mu)\), \(b_{1}, b_{2}\in \operatorname{RBMO}(\mu)\). Noticing that \(|g(x)|\leq Ng(x)\), recalling the boundedness of \(M^{(\alpha/2)}_{r,(\rho)}\) and \(M_{r,(\rho)}\), for \(\rho\geq5\) and \(r< q\), and using Hölder’s inequality, it follows from Lemmas 2.1-2.4 and Theorem 1.9 that

$$\begin{aligned}& \bigl\Vert [b_{1},b_{2},I_{\alpha,2}](g_{1},g_{2}) \bigr\Vert _{L^{q}(\mu)} \\& \quad \leq \bigl\Vert N\bigl([b_{1},b_{2},I_{\alpha,2}](g_{1},g_{2}) \bigr)\bigr\Vert _{L^{q}(\mu)} \\& \quad \leq C\bigl\Vert M^{\sharp,(\alpha/2)}\bigl([b_{1},b_{2},I_{\alpha ,2}](g_{1},g_{2}) \bigr)\bigr\Vert _{L^{q}(\mu)} \\& \quad \leq C\Vert b_{1}\Vert _{\ast} \Vert b_{2}\Vert _{\ast}\bigl\Vert M_{r,(6)} \bigl(I_{\alpha ,2}(g_{1},g_{2})\bigr)\bigr\Vert _{L^{q}(\mu)} \\& \qquad {}+C\Vert b_{1}\Vert _{\ast}\bigl\Vert M_{r,(6)}\bigl([b_{2},I_{\alpha,2}](g_{1},g_{2}) \bigr)\bigr\Vert _{L^{q}(\mu)} \\& \qquad {}+C\Vert b_{2}\Vert _{\ast}\bigl\Vert M_{r,(6)}\bigl([b_{1},I_{\alpha,2}](g_{1},g_{2}) \bigr)\bigr\Vert _{L^{q}(\mu)} \\& \qquad {}+C\Vert b_{1}\Vert _{\ast} \Vert b_{2}\Vert _{\ast}\bigl\Vert M^{(\alpha /2)}_{p_{1},(5)}g_{1}M^{(\alpha/2)}_{p_{2},(5)}g_{2} \bigr\Vert _{L^{q}(\mu)} \\& \quad \leq C\Vert b_{1}\Vert _{\ast} \Vert b_{2}\Vert _{\ast} \Vert g_{1}\Vert _{L^{p_{1}}(\mu)}\Vert g_{2}\Vert _{L^{p_{2}}(\mu)} \\& \qquad {}+C\Vert b_{1}\Vert _{\ast}\bigl\Vert [b_{2},I_{\alpha,2}](g_{1},g_{2})\bigr\Vert _{L^{q}(\mu )} \\& \qquad {}+C\Vert b_{2}\Vert _{\ast}\bigl\Vert [b_{1},I_{\alpha,2}](g_{1},g_{2})\bigr\Vert _{L^{q}(\mu)} \\& \quad \leq C\Vert b_{1}\Vert _{\ast} \Vert b_{2}\Vert _{\ast} \Vert g_{1}\Vert _{L^{p_{1}}(\mu)}\Vert g_{2}\Vert _{L^{p_{2}}(\mu)} \\& \qquad {}+C\Vert b_{1}\Vert _{\ast}\bigl\Vert M^{\sharp,(\alpha/2)}\bigl([b_{2},I_{\alpha ,2}](g_{1},g_{2}) \bigr)\bigr\Vert _{L^{q}(\mu)} \\& \qquad {}+C\Vert b_{2}\Vert _{\ast}\bigl\Vert M^{\sharp,(\alpha/2)}\bigl([b_{1},I_{\alpha ,2}](g_{1},g_{2}) \bigr)\bigr\Vert _{L^{q}(\mu)} \\& \quad \leq \Vert b_{1}\Vert _{\ast} \Vert b_{2}\Vert _{\ast} \Vert g_{1}\Vert _{L^{p_{1}}(\mu)}\Vert g_{2}\Vert _{L^{p_{2}}(\mu)} \\& \qquad {}+C\Vert b_{1}\Vert _{\ast}\bigl\Vert M_{r,(6)}\bigl(I_{\alpha,2}(g_{1},g_{2})\bigr) \bigr\Vert _{L^{q}(\mu )} \\& \qquad {}+C\Vert b_{1}\Vert _{\ast}\bigl\Vert M^{(\alpha/2)}_{p_{1},(5)}g_{1}M^{(\alpha /2)}_{p_{2},(5)}g_{2} \bigr\Vert _{L^{q}(\mu)} \\& \qquad {}+C\Vert b_{2}\Vert _{\ast}\bigl\Vert M_{r,(6)}\bigl(I_{\alpha,2}(g_{1},g_{2})\bigr) \bigr\Vert _{L^{q}(\mu )} \\& \qquad {}+C\Vert b_{2}\Vert _{\ast}\bigl\Vert M^{(\alpha/2)}_{p_{1},(5)}g_{1}M^{(\alpha /2)}_{p_{2},(5)}g_{2} \bigr\Vert _{L^{q}(\mu)} \\& \quad \leq C\Vert b_{1}\Vert _{\ast} \Vert b_{2}\Vert _{\ast} \Vert g_{1}\Vert _{L^{p_{1}}(\mu)}\Vert g_{2}\Vert _{L^{p_{2}}(\mu)}. \end{aligned}$$

This proves Theorem 1.10. □

3 Applications

In this section, we apply Theorem 1.9 and Theorem 1.10 to the study of a fractional integral operator.

Lemma 3.1

[15]

Suppose \(\operatorname{diam}(X)=\infty\), \(\alpha\in(0,1)\), \(p\in(1,1/\alpha)\), and \(1/q=1/p-\alpha\). If λ satisfies the ϵ-weak reverse doubling condition, for some \(\epsilon\in(0,\min\{\alpha,1-\alpha,1/q\})\), then

$$\|T_{\alpha}f\|_{L^{q}(\mu)}\leq C \|f\|_{L^{p}(\mu)}, $$

where \(T_{\alpha}\) is defined by

$$ T_{\alpha} f(x):= \int_{X} \frac{f(y)}{[\lambda(y,d(x,y))]^{1-\alpha}} \,d\mu(y). $$

Theorem 3.2

Under the same conditions as that in Lemma  3.1, the results of Theorem  1.9 and Theorem  1.10 hold true, on replacing \(I_{\beta}\) there by \(T_{\alpha}\).

4 Conclusion

In this paper, we prove that multilinear fractional integral operators and commutators, generated by multilinear fractional integrals, with an \(\operatorname{RBMO}(\mu)\) function on non-homogeneous metric measure spaces, are bounded in Lebesgue spaces. The results are established for both the homogeneous spaces and the non-doubling measure spaces.