1 Introduction

The theory of dynamic equations on time scales, which follows Hilger’s landmark paper [1], is a new study area of mathematics that has received a lot of attention. For example, we refer the reader to monographs [2, 3] and the references therein. During the last few years, some Lyapunov inequalities for dynamic equations on time scales have been obtained by many authors [47].

In 2002, Bohner et al. [8] investigated the second-order Sturm-Liouville dynamic equation

$$ x^{\Delta^{2}}(t)+q(t)x^{\sigma}(t)=0 $$
(1.1)

on time scale \({\mathbb{T}}\) under the conditions \(x(a)=x(b)=0\) (\(a,b\in{\mathbb{T}}\) with \(a< b\)) and \(q\in C_{\mathrm{rd}}({\mathbb{T}}, (0,\infty))\) and showed that if \(x(t)\) is a solution of (1.1) with \(\max_{t\in[a,b]_{ \mathbb{T}}}|x(t)|>0\), then

$$\int_{a}^{b}q(t)\Delta t\geq \frac{b-a}{C}, $$

where \([a,b]_{\mathbb{T}}\equiv\{t\in \mathbb{T}:a\leq t\leq b\}\) and \(C=\max\{(t-a)(b-t):t\in [a,b]_{\mathbb{T}}\}\).

When \({\mathbb{T}}= \mathbb{R}\), (1.1) reduces to the Hills equation

$$ x''(t) + u(t)x(t) = 0. $$
(1.2)

In 1907, Lyapunov [9] showed that if \(u\in C([a, b], {\mathbb{R}})\) and \(x(t)\) is a solution of (1.2) satisfying \(x(a) = x(b) = 0\) and \(\max_{t\in[a,b]}|x(t)|>0\), then the following classical Lyapunov inequality holds:

$$\int_{a}^{b}\bigl\vert u(t)\bigr\vert \, dt> \frac{4}{b-a}. $$

This was later strengthened with \(|u(t)|\) replaced by \(u^{+}(t)=\max\{u(t),0\}\) by Wintner [10] and thereafter by some other authors:

$$\int_{a}^{b}u^{+}(t)\, dt>\frac{4}{b-a}. $$

Moreover, the last inequality is optimal.

When \({\mathbb{T}}\) is the set \({\mathbb{Z}}\) of the integers, (1.1) reduces to the linear difference equation

$$ \Delta^{2}x(n)+u(n)x(n+1)=0. $$
(1.3)

In 1983, Cheng [11] showed that if \(a,b\in{\mathbb{Z}}\) with \(0< a< b\) and \(x(n)\) is a solution of (1.3) satisfying \(x(a)=x(b)=0\) and \(\max_{n\in\{a,a+1,\ldots,b\}}|x(n)|>0\), then

$$\sum_{n=a}^{b-2}\bigl\vert u(n)\bigr\vert \geq \left \{ \textstyle\begin{array}{l@{\quad}l} \frac{4(b-a)}{(b-a)^{2}-1} & \mbox{if } b-a-1 \mbox{ is even}, \\ \frac{4}{b-a} & \mbox{if } b-a-1 \mbox{ is odd} . \end{array}\displaystyle \right . $$

The purpose of this paper is to establish several Lyapunov inequalities for the nonlinear dynamic system

$$ \left \{ \textstyle\begin{array}{l} x^{\Delta}(t)= -A(t)x(\sigma(t))-B(t)y(t)|\sqrt{B(t)}y(t)|^{p-2}, \\ y^{\Delta}(t)= C(t)x(\sigma(t))|x(\sigma(t))|^{q-2}+A^{T}(t)y(t), \end{array}\displaystyle \right . $$
(1.4)

on a given time scale interval \([a,b]_{\mathbb{T}}\) (\(a,b\in{\mathbb{T}}\) with \(\sigma(a)< b\)), where \(p,q\in (1,+\infty)\) satisfy \(1/p+1/q=1\), \(A(t)\) is a real \(n\times n\) matrix-valued function on \([a,b]_{\mathbb{T}}\) such that \(I+\mu(t)A(t)\) is invertible, \(B(t)\) and \(C(t)\) are two real \(n\times n\) symmetric matrix-valued functions on \([a,b]_{ \mathbb{T}}\), \(B(t)\) being positive definite, \(A^{T}(t)\) is the transpose of \(A(t)\), and \(x(t)\), \(y(t)\) are two real n-dimensional vector-valued functions on \([a,b]_{\mathbb{T}}\).

When \(n=1\) and \(p=q=2\), (1.4) reduces to

$$ \left \{ \textstyle\begin{array}{l} x^{\Delta}(t)=u(t)x(\sigma(t))+v(t)y(t), \\ y^{\Delta}(t)=-w(t)x(\sigma(t))-u(t)y(t), \end{array}\displaystyle \right . $$
(1.5)

where \(u(t)\), \(v(t)\), and \(w(t)\) are real-valued rd-continuous functions on \(\mathbb{T}\) satisfying \(v(t)\geq0\) for any \(t\in {\mathbb{T}}\).

In 2011, He et al. [12] obtained the following result.

Theorem 1.1

([12])

Let \(1-\mu(t)u(t)>0 \) for any \(t\in\mathbb{T}\) and \(a, b \in\mathbb{T}^{k}\) with \(\sigma(a)\leq b\). If (1.5) has a real solution \((x(t),y(t))\) such that

$$\begin{aligned}& x(a)=0 \quad \textit{or}\quad x(a)x\bigl(\sigma(a)\bigr)< 0 ; \\& x(b)=0\quad \textit{or}\quad x(b)x\bigl(\sigma(b)\bigr)< 0 ; \qquad \max_{t\in[a,b]_{ \mathbb{T}}} \bigl\vert x(t)\bigr\vert >0, \end{aligned}$$

then we have the following inequality:

$$\int_{a}^{b}\bigl\vert u(t)\bigr\vert \Delta (t)+ \biggl[ \int_{a}^{\sigma (b)}v(t)\Delta (t) \int_{a}^{b}w^{+}(t)\Delta (t) \biggr]^{1/2}\geq 2, $$

where \(w^{+}(t)=\max\{w(t),0\}\).

In 2016, Liu et al. [13] obtained the following theorem.

Theorem 1.2

Let \(p=q=2\) and \(a,b\in \mathbb{T}\) with \(\sigma(a)< b\). If (1.4) has a solution \((x(t),y(t))\) such that

$$ x(a)=x(b)=0\quad \textit{and}\quad \max_{t\in[a,b]_{ \mathbb{T}}}x^{T}(t)x(t)>0 , $$
(1.6)

then for any \(n\times n\) symmetric matrix-valued function \(C_{1}(t)\) with \(C_{1}(t)- C(t)\geq0\), we have the following inequalities:

  1. (1)
    $$\int_{a}^{b}{\frac{[\int_{a}^{\sigma(t)}|B(s)||e_{\Theta A}(\sigma(t),s)|^{2}\Delta s ][\int_{\sigma(t)}^{b}|B(s)||e_{\Theta A}(\sigma(t),s)|^{2}\Delta s]}{\int_{a}^{b}|B(s)||e_{\Theta A}(\sigma(t),s)|^{2}\Delta s }}\bigl\vert C_{1}(t)\bigr\vert \Delta t\geq1, $$
  2. (2)
    $$\int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \biggl\{ \int_{a}^{b}\bigl\vert B(s)\bigr\vert \bigl\vert e_{\Theta A}\bigl(\sigma(t),s\bigr)\bigr\vert ^{2}\Delta s \biggr\} \Delta t\geq 4, $$
  3. (3)
    $$\int_{a}^{b}\bigl\vert A(t)\bigr\vert \Delta t+ \biggl( \int_{a}^{b}\bigl\vert \sqrt {B(t)}\bigr\vert ^{2}\Delta t \biggr)^{1/2} \biggl( \int _{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \Delta t \biggr)^{1/2}\geq2. $$

For some other related results on Lyapunov-type inequalities, see, for example, [1423].

2 Preliminaries and some lemmas

Throughout this paper, we adopt basic definitions and notation of monograph [2]. A time scale \(\mathbb{T}\) is a nonempty closed subset of the real numbers \(\mathbb{R}\). On a time scale \(\mathbb{T}\), the forward jump operator, the backward jump operator, and the graininess function are defined as

$$\sigma(t)=\inf\{s\in\mathbb{T}:s>t\},\qquad \rho(t)=\sup\{s\in \mathbb{ T}:s< t \}, \quad \mbox{and} \quad \mu(t)=\sigma(t)-t, $$

respectively.

The point \(t \in\mathbb{T}\) is said to be left-dense (resp. left-scattered) if \(\rho(t) = t \) (resp. \(\rho(t) < t\)). The point \(t\in\mathbb{T}\) is said to be right-dense (resp. right-scattered) if \(\sigma(t) = t\) (resp. \(\sigma(t) > t\)). If \(\mathbb{T}\) has a left-scattered maximum M, then we define \(\mathbb{T}^{k} = \mathbb{T}- \{M\}\), otherwise \(\mathbb{T}^{k} = \mathbb{T}\).

A function \(f : \mathbb{T}\rightarrow \mathbb{R}\) is said to be rd-continuous if f is continuous at right-dense points and has finite left-sided limits at left-dense points in \(\mathbb{T}\). The set of all rd-continuous functions from \(\mathbb{T}\) to \(\mathbb{R}\) is denoted by \(C_{\mathrm{rd}}(\mathbb{T},\mathbb{R})\). For a function \(f : \mathbb{T} \rightarrow \mathbb{R}\), the notation \(f^{\sigma}\) means the composition \(f\circ\sigma\).

For a function \(f : \mathbb{T}\rightarrow \mathbb{R}\), the (delta) derivative \(f^{\Delta}(t)\) at \(t\in\mathbb{T}\) is defined as the number (if it exists) such that for given any \(\varepsilon> 0\), there is a neighborhood U of t with

$$\bigl\vert f\bigl(\sigma(t)\bigr)-f(s)-f^{\Delta}(t) \bigl(\sigma(t)-s \bigr)\bigr\vert \leq\varepsilon \bigl\vert \sigma(t)-s\bigr\vert $$

for all \(s\in U\). If the (delta) derivative \(f^{\Delta}(t)\) exists for every \(t\in\mathbb{T}^{k}\), then we say that f is Δ-differentiable on \(\mathbb{T}\).

Let \(F,f\in C_{\mathrm{rd}}(\mathbb{T}, \mathbb{R})\) satisfy \(F^{\Delta }(t)=f(t)\) for all \(t\in \mathbb{T}^{k}\). Then, for any \(c,d\in\mathbb{T}\), the Cauchy integral of f is defined as

$$\int_{c}^{d}f(t)\Delta t=F(d)-F(c). $$

For any \(z\in{\mathbb{R}}^{n}\) and any \(S\in{ \mathbb{R}}^{n\times n}\) (the space of real \(n\times n\) matrices), write

$$|z|=\sqrt{z^{T}z} \quad \mbox{and} \quad |S|=\max_{z\in\mathbb {R}^{n},z\neq0} \frac{ |Sz|}{|z|}, $$

which are called the Euclidean norm of z and the matrix norm of S, respectively. It is obvious that, for any \(z\in{ \mathbb{R}}^{n}\) and \(U,V\in{\mathbb{R}}^{n\times n}\),

$$|Uz|\leq|U||z| \quad \mbox{and} \quad |UV|\leq|U||V|. $$

Let \(\mathbb{R}^{n\times n}_{s}\) be the set of all symmetric real \(n\times n\) matrices. We can show that, for any \(U\in{\mathbb{R}}_{s}^{n\times n}\),

$$|U|=\max_{|\lambda I-U|=0}|\lambda| \quad \mbox{and} \quad |U^{2}|=|U|^{2}. $$

A matrix \(S\in {\mathbb{R}}_{s}^{n\times n}\) is said to be positive definite (resp. semipositive definite), written as \(S> 0\) (resp. \(S \geq 0\)), if \(y^{T}Sy> 0\) (resp. \(y^{T}Sy\geq0\)) for any \(y\in{ \mathbb{R}}^{n}\) with \(y\neq0\). If S is positive definite (resp. semipositive definite), then there exists a unique positive definite matrix (resp. semipositive definite matrix), written as \(\sqrt{S}\), satisfying \([\sqrt{S}]^{2}=S\).

In this paper, we establish Lyapunov inequalities for (1.4) that has a solution \((x(t),y(t))\) satisfying

$$ x(a)=x(b)=0 \quad \mbox{and}\quad \max_{t\in[a,b]_{ \mathbb{T}}}x^{T}(t)x(t)>0. $$
(2.1)

We first introduce the following lemmas.

Lemma 2.1

([2])

Let \(1/p+1/q=1\) (\(p,q\in(1,+\infty)\)) and \(a,b\in{\mathbb{T}}\) (\(a< b\)). Then, for any \(f,g\in C_{\mathrm{rd}}([a,b]_{ \mathbb{T}},{\mathbb{R}})\),

$$\int_{a}^{b}\bigl\vert f(t)g(t)\bigr\vert \Delta t\leq \biggl( \int _{a}^{b}\bigl\vert f(t)\bigr\vert ^{p}\Delta t \biggr)^{\frac{1}{p}} \biggl( \int_{a}^{b}\bigl\vert g(t)\bigr\vert ^{q}\Delta t \biggr)^{\frac{1}{q}}. $$

Lemma 2.2

Let \(a,b\in{\mathbb{T}}\) with \(a< b\). Suppose that \(\alpha,\beta,\gamma,\delta\in \mathbb{R}\) and \(p,q\in (1,+\infty)\) with \(\alpha/p+\beta/q=\gamma/p+\delta/q=1/p+1/q=1\). Then, for any \(f,g\in C_{\mathrm{rd}}([a,b]_{\mathbb{T}},(-\infty,0)\cup(0,\infty))\),

$$\int_{a}^{b}\bigl\vert f(t)g(t)\bigr\vert \Delta t\leq \biggl( \int_{a}^{b}\bigl\vert f(t)\bigr\vert ^{\alpha}\bigl\vert g(t)\bigr\vert ^{\gamma} \Delta t \biggr)^{\frac{1}{p}} \biggl( \int_{a}^{b}\bigl\vert f(t)\bigr\vert ^{\beta}\bigl\vert g(t)\bigr\vert ^{\delta} \Delta t \biggr)^{\frac{1}{q}}. $$

Proof

Let \(M(t)=(|f(t)|^{\alpha}|g(t)|^{\gamma})^{\frac{1}{p}}\) and \(N(t)=(|f(t)|^{\beta}|g(t)|^{\delta})^{\frac{1}{q}}\). Then by Lemma 2.1 we have

$$\begin{aligned} \int^{b}_{a}\bigl\vert f(t)g(t)\bigr\vert \Delta t =& \int ^{b}_{a}M(t)N(t)\Delta t \\ \leq& \biggl( \int^{b}_{a}M^{p}(t)\Delta t \biggr)^{\frac{1}{p}} \biggl( \int ^{b}_{a}N^{q}(t)\Delta t \biggr)^{\frac{1}{q}} \\ =& \biggl( \int_{a}^{b}\bigl\vert f(t)\bigr\vert ^{\alpha}\bigl\vert g(t)\bigr\vert ^{\gamma} \Delta t \biggr)^{\frac{1}{p}} \biggl( \int_{a}^{b}\bigl\vert f(t)\bigr\vert ^{\beta}\bigl\vert g(t)\bigr\vert ^{\delta} \Delta t \biggr)^{\frac{1}{q}}. \end{aligned}$$

This completes the proof of Lemma 2.2. □

Remark 2.3

Let \(\gamma=0\) in Lemma 2.2. Then we obtain that, for any \(f,g\in C_{\mathrm{rd}}([a,b]_{ \mathbb{T}},(-\infty, 0)\cup(0,\infty))\),

$$\int_{a}^{b}\bigl\vert f(t)g(t)\bigr\vert \Delta t\leq \Bigl\{ \max_{t\in[a,b]_{ \mathbb{T}}}\bigl\vert f(t)\bigr\vert ^{\beta}\Bigr\} ^{\frac{1}{q}} \biggl( \int _{a}^{b}\bigl\vert f(t)\bigr\vert ^{\alpha} \Delta t \biggr)^{\frac{1}{p}} \biggl( \int_{a}^{b}\bigl\vert g(t)\bigr\vert ^{q}\Delta t \biggr)^{\frac{1}{q}}. $$

Lemma 2.4

([2])

If \(A\in C_{\mathrm{rd}}({\mathbb{T}, \mathbb{R}^{n\times n}})\) with invertible \(I+\mu(t)A(t)\), \(f\in C_{\mathrm{rd}}(\mathbb{T},\mathbb{R}^{n}) \), \(t_{0} \in\mathbb{T}\), and \(a \in\mathbb{R}^{n}\), then

$$x(t)=e_{\Theta A}(t,t_{0})a+ \int_{t_{0}}^{t}e_{\Theta A}(t,\tau)f(\tau)\Delta{ \tau} $$

is the unique solution of the initial value problem

$$\left \{ \textstyle\begin{array}{l} x^{\Delta}(t)= -A(t)x(\sigma(t))+f(t), \\ x(t_{0})= a, \end{array}\displaystyle \right . $$

where \((\Theta A)(t)=-[I+\mu(t)A(t)]^{-1}A(t)\) for any \(t\in\mathbb{T}^{k}\), and \(e_{\Theta A}(t,t_{0})\) is the unique matrix-valued solution of the initial value problem

$$\left \{ \textstyle\begin{array}{l} Y^{\Delta}(t)= (\Theta A)(t)Y(t), \\ Y(t_{0})= I. \end{array}\displaystyle \right . $$

Lemma 2.5

([2])

Let \(A,B\in C_{\mathrm{rd}}({\mathbb{T}, \mathbb{R}^{n\times n}})\) be Δ-differentiable. Then

$$\bigl(A(t)B(t)\bigr)^{\Delta }=A^{\sigma}(t) B^{\Delta }(t)+A^{\Delta }(t) B(t)=A^{\Delta }(t) B^{\sigma}(t)+A(t)B^{\Delta }(t). $$

Lemma 2.6

([13])

If \(f_{1}(t),f_{2}(t),\ldots,f_{n}(t)\) are Δ-integrable on \({[a,b]_{\mathbb{T}}}\) and \(x(t)=(f_{1}(t),f_{2}(t), \ldots,f_{n}(t))\), then

$$\biggl\vert \int_{a}^{b}x(t)\Delta t\biggr\vert = \Biggl\{ \sum_{i=1}^{n} \biggl( \int _{a}^{b}f_{i}(t)\Delta t \biggr)^{2} \Biggr\} ^{\frac{1}{2}}\leq \int_{a}^{b} \Biggl\{ \sum _{i=1}^{n}f^{2}_{i}(t) \Biggr\} ^{\frac{1}{2}}\Delta t= \int _{a}^{b}\bigl\vert x(t)\bigr\vert \Delta t. $$

Lemma 2.7

([13])

If \(A_{1},A_{2}\in \mathbb{R}^{n\times n}_{s}\) and \(A_{1}-A_{2}\geq0\), then, for any \(x \in\mathbb{R}^{n}\),

$$\bigl(x^{\sigma}\bigr)^{T}A_{2}x^{\sigma}\leq|A_{1}|\bigl\vert x^{\sigma}\bigr\vert ^{2} . $$

3 Main results and proofs

In this section, we assume that \(\alpha,\beta\in\mathbb{R}\) and \(p,q\in(1,+\infty)\) satisfy

$$\alpha/p+\beta/q=1/p+1/q=1. $$

For any \(t,\tau\in [a,b]_{\mathbb{T}}\), write

$$\begin{aligned}& F(t,\tau) = \bigl\vert e_{\Theta A}\bigl(\sigma(t),\tau\bigr)\bigr\vert \bigl\vert \sqrt{B(\tau)}\bigr\vert , \\& G(t) = \bigl\vert \sqrt{B(t)}y(t)\bigr\vert ^{p-2}y^{T}(t)B(t)y(t)= \bigl\vert \sqrt{B(t)}y(t)\bigr\vert ^{p}, \\& \Phi\bigl(\sigma(t)\bigr) = \biggl( \int_{a}^{\sigma(t)}F^{\alpha}(t,s)\Delta s \biggr)^{\frac{q}{p}}, \\& \Psi\bigl(\sigma(t)\bigr) = \biggl( \int_{\sigma(t)}^{b}F^{\alpha}(t,s)\Delta s \biggr)^{\frac{q}{p}}, \\& P(t) = \Phi\bigl(\sigma(t)\bigr)\Psi\bigl(\sigma(t)\bigr)\max _{a\leq\tau\leq \sigma(t)}F^{\beta}(t,\tau) \max_{\sigma(t)\leq\tau\leq b}F^{\beta}(t, \tau), \\& Q(t) = \Phi\bigl(\sigma(t)\bigr)\max_{a\leq\tau\leq \sigma(t)}F^{\beta}(t, \tau)+\Psi\bigl(\sigma(t)\bigr)\max_{\sigma(t)\leq \tau\leq b}F^{\beta}(t, \tau). \end{aligned}$$

Theorem 3.1

Let \(a,b\in\mathbb{T}\) with \(\sigma(a)< b\) and \(C_{1}\in\mathbb{R}^{n\times n}_{s}\) with \(C_{1}(t)-C(t)\geq0\). If (1.4) has a solution \((x(t),y(t))\) with \(x(t),y(t)\in C_{\mathrm{rd}}(\mathbb{T},\mathbb{R}^{n}) \) satisfying (2.1) on the interval \([a,b]_{\mathbb{T}}\), then

$$ \int_{a}^{b}{\frac{P(t)}{Q(t)}}\bigl\vert C_{1}(t)\bigr\vert \Delta t\geq1. $$
(3.1)

Proof

Since \((x(t),y(t))\) is a solution of (1.4), we have

$$ \bigl(y^{T}(t)x(t)\bigr)^{\Delta}=\bigl(x^{\sigma}(t) \bigr)^{T}C(t)x^{\sigma}(t)\bigl\vert x^{\sigma}(t)\bigr\vert ^{q-2}-G(t). $$
(3.2)

Integrating (3.2) from a to b and noting that \(x(a)=x(b)=0\), we obtain

$$\int_{a}^{b}G(t)\Delta t= \int_{a}^{b}\bigl\vert x^{\sigma}(t)\bigr\vert ^{q-2}\bigl(x^{\sigma}(t)\bigr)^{T}C(t)x^{\sigma}(t) \Delta t. $$

Noting that \(B(t)>0\), we know that \(y^{T}(t)B(t)y(t)\geq0\), \(t\in [a,b]_{\mathbb{T}}\).

We claim that \(y^{T}(t)B(t)y(t)\not\equiv0\) (\(t\in [a,b]_{\mathbb{T}}\)). Indeed, if \(y^{T}(t)B(t)y(t)\equiv0\) (\(t\in [a,b]_{\mathbb{T}}\)), then

$$\bigl\vert \sqrt{B(t)}y(t)\bigr\vert ^{2}=y^{T}(t)B(t)y(t) \equiv0, $$

which implies \(B(t)y(t)\equiv0\) (\(t\in[a,b]_{\mathbb{T}}\)). Thus, the first equation of (1.4) reduces to

$$x^{\Delta}(t)= -A(t)x\bigl(\sigma(t)\bigr),\qquad x(a)=0. $$

By Lemma 2.4 it follows

$$x(t)=e_{\Theta A}(t,a)\cdot0=0, $$

which is a contradiction to (2.1). Hence, we obtain that

$$ \int_{a}^{b}\bigl\vert x^{\sigma}(t)\bigr\vert ^{q-2}\bigl(x^{\sigma}(t)\bigr)^{T}C(t)x^{\sigma }(t) \Delta t= \int_{a}^{b}G(t)\Delta t>0, $$
(3.3)

and it follows from Lemma 2.4 that, for \(t\in[a,b]_{\mathbb{T}}\),

$$\begin{aligned} x(t) =& - \int_{a}^{t}e_{\Theta A}(t,\tau)B(\tau)y(\tau ) \bigl\vert \sqrt{B(\tau)}y(\tau)\bigr\vert ^{p-2}\Delta{\tau} \\ =& - \int_{b}^{t}e_{\Theta A} (t,\tau)B(\tau)y(\tau) \bigl\vert \sqrt{B(\tau)}y(\tau)\bigr\vert ^{p-2}\Delta{\tau}, \end{aligned}$$

which implies that, for \(t\in[a,b)_{\mathbb{T}}\),

$$\begin{aligned} x^{\sigma}(t) =&- \int_{a}^{\sigma(t)}e_{\Theta A}\bigl(\sigma (t),\tau \bigr)B(\tau)y(\tau)\bigl\vert \sqrt{B(\tau)}y(\tau)\bigr\vert ^{p-2} \Delta {\tau} \\ =&+ \int_{\sigma(t)}^{b}e_{\Theta A}\bigl(\sigma(t),\tau \bigr)B(\tau)y(\tau)\bigl\vert \sqrt{B(\tau)}y(\tau)\bigr\vert ^{p-2} \Delta {\tau}. \end{aligned}$$

Note that, for \(a\leq\sigma(t)\leq b\),

$$\begin{aligned}& \bigl\vert e_{\Theta A}\bigl(\sigma(t),\tau\bigr)B(\tau)y(\tau)\bigr\vert \sqrt {B(\tau)}y(\tau)\bigl\vert ^{p-2}\bigr\vert \\& \quad \leq \bigl\vert e_{\Theta A}\bigl(\sigma(t),\tau\bigr)\bigr\vert \bigl\vert B(\tau)y(\tau)\bigr\vert \bigl\vert \sqrt{B(\tau)}y(\tau)\bigr\vert ^{p-2} \\& \quad \leq F(t,\tau)\bigl\vert \sqrt{B(\tau)}y(\tau)\bigr\vert \bigl\vert \sqrt{B(\tau)}y(\tau)\bigr\vert ^{p-2} \\& \quad = F(t,\tau)G^{\frac{1}{q}}(\tau). \end{aligned}$$

Then by Remark 2.3 and Lemma 2.6 we obtain

$$\begin{aligned} \bigl\vert x^{\sigma}(t)\bigr\vert ^{q} =&\biggl\vert \int_{a}^{\sigma(t)}e_{\Theta A}\bigl(\sigma(t),\tau \bigr)B(\tau)y(\tau)\bigl\vert \sqrt{B(\tau)}y(\tau)\bigr\vert ^{p-2} \Delta {\tau}\biggr\vert ^{q} \\ \leq& \biggl[ \int_{a}^{\sigma(t)}\bigl\vert e_{\Theta A}\bigl( \sigma(t),\tau\bigr)B(\tau )y(\tau)\bigl\vert \sqrt{B(\tau)}y(\tau)\bigr\vert ^{p-2}\bigr\vert \Delta{\tau} \biggr]^{q} \\ \leq& \biggl[ \int_{a}^{\sigma(t)}F(t,\tau)G^{\frac{1}{q}}(\tau)\Delta { \tau} \biggr]^{q} \\ \leq& \biggl( \int_{a}^{\sigma(t)}F^{\alpha}(t,\tau)\Delta { \tau} \biggr)^{\frac{q}{p}} \int_{a}^{\sigma(t)}F^{\beta}(t,\tau)G(\tau )\Delta {\tau} \\ \leq& \max_{a\leq\tau\leq\sigma(t)}F^{\beta}(t,\tau) \biggl( \int _{a}^{\sigma(t)}F^{\alpha}(t,\tau)\Delta { \tau} \biggr)^{\frac{q}{p}} \int_{a}^{\sigma(t)}G(\tau)\Delta {\tau}, \end{aligned}$$

that is,

$$ \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\leq\max _{a\leq\tau\leq\sigma(t)}F^{\beta}(t,\tau)\Phi \bigl(\sigma(t)\bigr) \int_{a}^{\sigma(t)}G(\tau)\Delta{\tau}. $$
(3.4)

Similarly, for \(a\leq\sigma(t) \leq b\), we have

$$ \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\leq\max _{\sigma(t)\leq\tau\leq b}F^{\beta}(t,\tau)\Psi \bigl(\sigma(t)\bigr) \int_{\sigma(t)}^{b}G(\tau)\Delta{\tau}. $$
(3.5)

It follows from (3.4) and (3.5) that

$$\bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\leq\frac{P(t)}{Q(t)} \int_{a}^{b}G(\tau)\Delta{\tau}. $$

Then by (3.3) and Lemma 2.7 we have

$$\begin{aligned}& \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t \\& \quad \leq \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \frac{P(t)}{Q(t)}\Delta t \int _{a}^{b}G(t)\Delta t \\& \quad = \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \frac{P(t)}{Q(t)}\Delta t \int_{a}^{b}\bigl\vert x^{\sigma}(t)\bigr\vert ^{q-2}\bigl(x^{\sigma}(t)\bigr)^{T}C(t)x^{\sigma }(t) \Delta t \\& \quad \leq \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \frac{P(t)}{Q(t)}\Delta t \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t. \end{aligned}$$

Since

$$\int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t\geq \int_{a}^{b}\bigl\vert x^{\sigma}(t)\bigr\vert ^{q-2}\bigl(x^{\sigma}(t)\bigr)^{T}C(t)x^{\sigma}(t) \Delta t= \int_{a}^{b} G(t)\Delta {t}>0, $$

we get

$$\int_{a}^{b}\frac{P(t)}{Q(t)}\bigl\vert C_{1}(t)\bigr\vert \Delta t\geq1. $$

This completes the proof of Theorem 3.1. □

Corollary 3.2

Let \(a,b\in\mathbb{T}\) with \(\sigma(a)< b\) and \(C_{1}\in\mathbb{R}^{n\times n}_{s}\) with \(C_{1}(t)-C(t)\geq0\). If (1.4) has a solution \((x(t),y(t))\) with \(x(t),y(t)\in C_{\mathrm{rd}}(\mathbb{T},\mathbb{R}^{n}) \) satisfying (2.1) on the interval \([a,b]_{\mathbb{T}}\), then

$$ \int_{a}^{b}Q(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \geq4. $$
(3.6)

Proof

Note that

$$\frac{P(t)}{Q(t)}\leq \frac{Q(t)}{4}. $$

It follows from (3.1) that

$$\int_{a}^{b} \frac{Q(t)}{4}\bigl\vert C_{1}(t)\bigr\vert \Delta t\geq1, $$

that is,

$$\int_{a}^{b}Q(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \geq4. $$

This completes the proof of Corollary 3.2. □

Corollary 3.3

Let \(a,b\in\mathbb{T}\) with \(\sigma(a)< b\) and \(C_{1}\in\mathbb{R}^{n\times n}_{s}\) with \(C_{1}(t)-C(t)\geq0\). If (1.4) has a solution \((x(t),y(t))\) with \(x(t),y(t)\in C_{\mathrm{rd}}(\mathbb{T},\mathbb{R}^{n}) \) satisfying (2.1) on the interval \([a,b]_{\mathbb{T}}\), then

$$ \int_{a}^{b}\sqrt{P(t)}\bigl\vert C_{1}(t)\bigr\vert \Delta t \geq2. $$
(3.7)

Proof

Note that

$$Q(t)\geq2\sqrt{P(t)}. $$

It follows from (3.1) that

$$\int_{a}^{b}\sqrt{P(t)}\bigl\vert C_{1}(t)\bigr\vert \Delta t\geq \int_{a}^{b}2\frac {P(t)}{Q(t)}\bigl\vert C_{1}(t)\bigr\vert \Delta t\geq2. $$

This completes the proof of Corollary 3.3. □

Theorem 3.4

Let \(a,b\in\mathbb{T}\) with \(\sigma(a)< b\) and \(C_{1}\in\mathbb{R}^{n\times n}_{s}\) with \(C_{1}(t)-C(t)\geq0\). If (1.4) has a solution \((x(t),y(t))\) with \(x(t),y(t)\in C_{\mathrm{rd}}(\mathbb{T},\mathbb{R}^{n}) \) satisfying (2.1) on the interval \([a,b]_{\mathbb{T}}\), then there exists \(c\in(a,b)\) such that

$$ \left \{ \textstyle\begin{array}{l} {\int}_{a}^{\sigma(c)}\Phi(\sigma(t))\max_{a\leq\tau\leq \sigma(t)}F^{\beta}(t,\tau)|C_{1}(t)|\Delta t\geq1, \\ \int_{c}^{b} \Psi(\sigma(t))\max_{\sigma(t)\leq\tau\leq b}F^{\beta}(t,\tau)|C_{1}(t)|\Delta t\geq1. \end{array}\displaystyle \right . $$
(3.8)

Proof

Set \(U(t)=\Phi(\sigma(t))\max_{a\leq \tau\leq\sigma(t)}F^{\beta}(t,\tau)\) and \(V(t)= \Psi(\sigma(t))\max_{\sigma(t)\leq\tau\leq b}F^{\beta}(t,\tau)\). Let

$$f(t)= \int_{a}^{t}U(s)\bigl\vert C_{1}(s) \bigr\vert \Delta s- \int_{t}^{b}V(s)\bigl\vert C_{1}(s) \bigr\vert \Delta s. $$

Then we have \(f(a)<0\) and \(f(b)>0\). Hence, we can choose \(c\in(a,b)\) such that \(f(c)\leq0\) and \(f(\sigma(c))\geq0\), that is,

$$ \int_{a}^{c}U(s)\bigl\vert C_{1}(s) \bigr\vert \Delta s\leq \int _{c}^{b}V(s)\bigl\vert C_{1}(s) \bigr\vert \Delta s $$
(3.9)

and

$$ \int_{a}^{\sigma(c)}U(s)\bigl\vert C_{1}(s) \bigr\vert \Delta s\geq \int_{\sigma(c)}^{b}V(s)\bigl\vert C_{1}(s) \bigr\vert \Delta s. $$
(3.10)

By (3.4) we have that

$$ \bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t) \bigr\vert ^{q}\leq U(t)\bigl\vert C_{1}(t)\bigr\vert \int_{a}^{\sigma(t)}G(\tau )\Delta{\tau}. $$
(3.11)

Integrating (3.11) from a to \(\sigma(c)\), we obtain

$$\begin{aligned} \int_{a}^{\sigma(c)}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t \leq& \int _{a}^{\sigma(c)}U(t)\bigl\vert C_{1}(t) \bigr\vert \biggl( \int_{a}^{\sigma(t)} G(\tau)\Delta{\tau} \biggr) \Delta t \\ \leq& \int_{a}^{c}U(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{a}^{\sigma(c)}G(\tau)\Delta {\tau} \\ &{}+U(c)\bigl\vert C_{1}(c)\bigr\vert \bigl(\sigma(c)-c\bigr) \int_{a}^{\sigma(c)}G(\tau)\Delta {\tau} \\ =& \int_{a}^{\sigma(c)}U(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{a}^{\sigma(c)}G(\tau)\Delta{\tau}. \end{aligned}$$

Similarly, we obtain from (3.4) and (3.10) that

$$\begin{aligned} \int_{\sigma(c)}^{b}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t \leq& \int _{\sigma(c)}^{b}V(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{\sigma(c)}^{b}G(\tau )\Delta{\tau} \\ \leq& \int _{a}^{\sigma(c)}U(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{\sigma(c)}^{b}G(\tau )\Delta{\tau}. \end{aligned}$$

This yields

$$\begin{aligned} \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t \leq& \int _{a}^{\sigma(c)}U(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{a}^{b}G(t)\Delta t \\ =& \int_{a}^{\sigma (c)}U(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{a}^{b}\bigl\vert x^{\sigma}(t)\bigr\vert ^{q-2}\bigl(x^{\sigma}(t)\bigr)^{T}C(t)x^{\sigma}(t) \Delta t \\ \leq& \int_{a}^{\sigma(c)}U(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t. \end{aligned}$$

Since

$$\begin{aligned} \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t \geq& \int_{a}^{b}\bigl\vert x^{\sigma}(t)\bigr\vert ^{q-2}\bigl(x^{\sigma}(t)\bigr)^{T}C(t)x^{\sigma}(t) \Delta t \\ =& \int _{a}^{b}G(t)\Delta {t}>0, \end{aligned}$$

we have \(\int_{a}^{\sigma(c)}U(t)|C_{1}(t)|\Delta t\geq1\).

Next, we obtain from (3.5) that

$$ \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\bigl\vert C_{1}(t)\bigr\vert \leq V(t)\bigl\vert C_{1}(t)\bigr\vert \int_{\sigma(t)}^{b}G(\tau )\Delta{\tau}. $$
(3.12)

Integrating (3.12) from c to b, we have

$$\begin{aligned} \int_{c}^{b}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t \leq& \int _{c}^{b}V(t)\bigl\vert C_{1}(t) \bigr\vert \biggl( \int_{\sigma(t)}^{b}G(\tau)\Delta{\tau} \biggr) \Delta t \\ \leq& \int_{c}^{b}V(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{\sigma (c)}^{b}G(\tau)\Delta{\tau}. \end{aligned}$$

Similarly, we obtain

$$\begin{aligned} \begin{aligned} \int_{a}^{c}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t&\leq \int _{a}^{c}U(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{a}^{\sigma(c)}G(\tau)\Delta {\tau} \\ &\leq \int _{c}^{b}V(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{a}^{\sigma(c)}G(\tau)\Delta {\tau}. \end{aligned} \end{aligned}$$

This yields

$$\begin{aligned} \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t \leq& \int _{c}^{b}V(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{a}^{b}G(t)\Delta t \\ =& \int_{c}^{b}V(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{a}^{b}\bigl\vert x^{\sigma}(t)\bigr\vert ^{q-2}\bigl(x^{\sigma}(t)\bigr)^{T}C(t)x^{\sigma }(t) \Delta t \\ \leq& \int_{c}^{b}V(t)\bigl\vert C_{1}(t) \bigr\vert \Delta t \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t. \end{aligned}$$

Thus, we have \(\int_{c}^{b}V(t)|C_{1}(t)|\Delta t\geq1\). This completes the proof of Theorem 3.4. □

Theorem 3.5

Let \(a,b\in\mathbb{T}\) with \(\sigma(a)< b\) and \(C_{1}\in\mathbb{R}^{n\times n}_{s}\) with \(C_{1}(t)-C(t)\geq0\). If (1.4) has a solution \((x(t),y(t))\) with \(x(t),y(t)\in C_{\mathrm{rd}}(\mathbb{T},\mathbb{R}^{n}) \) satisfying (2.1) on the interval \([a,b]_{\mathbb{T}}\), then

$$\int_{a}^{b}\bigl\vert A(t)\bigr\vert \Delta t+\Bigl\{ \max_{a\leq t\leq b}\bigl\vert \sqrt {B(t)}\bigr\vert ^{\beta}\Bigr\} ^{\frac{1}{q}} \biggl( \int_{a}^{b}\bigl\vert \sqrt{B(t)}\bigr\vert ^{\alpha} \Delta t \biggr)^{\frac{1}{p}} \biggl( \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \Delta t \biggr)^{\frac{1}{q}}\geq2. $$

Proof

Since \(x(a)=x(b)=0\), we have

$$\int_{a}^{b}G(t)\Delta t= \int_{a}^{b}\bigl\vert x^{\sigma}(t)\bigr\vert ^{q-2}\bigl(x^{\sigma}(t)\bigr)^{T}C(t)x^{\sigma}(t) \Delta t. $$

It follows from the first equation of (1.4) that, for all \(a\leq t \leq b\),

$$\begin{aligned} x(t) =& \int_{a}^{t}\bigl(-A(\tau)x^{\sigma}(\tau)-B( \tau)\bigl\vert \sqrt{B(\tau)}y(\tau )\bigr\vert ^{p-2}y(\tau)\bigr) \Delta \tau \\ =& \int_{t}^{b}\bigl(A(\tau)x^{\sigma}(\tau)+B( \tau)\bigl\vert \sqrt{B(\tau )}y(\tau)\bigr\vert ^{p-2}y(\tau)\bigr) \Delta \tau. \end{aligned}$$

Thus, we have

$$\begin{aligned} \bigl\vert x(t)\bigr\vert =&\biggl\vert \int_{a}^{t}\bigl(-A(\tau)x^{\sigma}(\tau)-B( \tau )y(\tau)\bigr)\bigl\vert \sqrt{B(\tau)}y(\tau)\bigr\vert ^{p-2} \Delta \tau\biggr\vert \\ \leq& \int_{a}^{t}\bigl\vert A(\tau)x^{\sigma}( \tau)+B(\tau)y(\tau)\bigr\vert \sqrt{B(\tau )}y(\tau)\bigl\vert ^{p-2} \bigr\vert \Delta \tau \\ \leq& \int_{a}^{t}\bigl\vert A(\tau)x^{\sigma}( \tau)\bigr\vert \Delta \tau+ \int _{a}^{t}\bigl\vert B(\tau)y(\tau)\bigr\vert \bigl\vert \sqrt{B(\tau)}y(\tau)\bigr\vert ^{p-2} \Delta \tau \\ \leq& \int_{a}^{t}\bigl\vert A(\tau)\bigr\vert \bigl\vert x^{\sigma}(\tau)\bigr\vert \Delta \tau+ \int_{a}^{t}\bigl\vert \sqrt{B(\tau)}\bigr\vert G^{\frac{1}{q}}(\tau)\Delta \tau. \end{aligned}$$

Similarly, we have

$$\bigl\vert x(t)\bigr\vert \leq \int_{t}^{b}\bigl\vert A(\tau)\bigr\vert \bigl\vert x^{\sigma}(\tau)\bigr\vert \Delta \tau + \int_{t}^{b}\bigl\vert \sqrt{B(\tau)}\bigr\vert G^{\frac{1}{q}}(\tau)\Delta \tau. $$

Then we obtain

$$\begin{aligned} \bigl\vert x(t)\bigr\vert \leq&\frac{1}{2} \biggl[ \int _{a}^{b}\bigl\vert A(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert \Delta t+ \int_{a}^{b}\bigl\vert \sqrt{B(t )}\bigr\vert G^{\frac{1}{q}}(t) \Delta t \biggr] \\ \leq& \frac{1}{2} \biggl[ \int_{a}^{b}\bigl\vert A(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert \Delta t+\Bigl\{ \max _{a\leq t\leq b}\bigl\vert \sqrt{B(t)}\bigr\vert ^{\beta}\Bigr\} ^{\frac{1}{q}} \\ &{}\times\biggl( \int_{a}^{b} \bigl\vert \sqrt{B(t)}\bigr\vert ^{\alpha} \Delta t \biggr)^{\frac{1}{p}} \biggl( \int _{a}^{b}G(t)\Delta t \biggr)^{\frac{1}{q}} \biggr] \\ =& \frac{1}{2} \biggl[ \int_{a}^{b}\bigl\vert A(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert \Delta t+\Bigl\{ \max _{a\leq t\leq b}\bigl\vert \sqrt{B(t)}\bigr\vert ^{\beta}\Bigr\} ^{\frac{1}{q}} \biggl( \int _{a}^{b}\bigl\vert \sqrt{B(t)}\bigr\vert ^{\alpha} \Delta t \biggr)^{\frac{1}{p}} \\ &{}\times \biggl( \int_{a}^{b}\bigl\vert x^{\sigma}(t)\bigr\vert ^{q-2}\bigl(x^{\sigma }(t)\bigr)^{T}C(t)x^{\sigma}(t) \Delta t \biggr)^{\frac{1}{q}} \biggr] \\ \leq&\frac{1}{2} \biggl[ \int_{a}^{b}\bigl\vert A(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert \Delta t+\Bigl\{ \max _{a\leq t\leq b}\bigl\vert \sqrt{B(t)}\bigr\vert ^{\beta}\Bigr\} ^{\frac{1}{q}} \\ &{}\times\biggl( \int_{a}^{b}\bigl\vert \sqrt {B(t)}\bigr\vert ^{\alpha} \Delta t \biggr)^{\frac{1}{p}} \biggl( \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \bigl\vert x^{\sigma}(t)\bigr\vert ^{q}\Delta t \biggr)^{\frac{1}{q}} \biggr]. \end{aligned}$$

Denote \(M=\max_{a\leq t\leq b}|x(t)|>0\). Then

$$M\leq \frac{1}{2} \biggl[ \int_{a}^{b}\bigl\vert A(t)\bigr\vert M \Delta t+\Bigl\{ \max_{a\leq t\leq b}\bigl\vert \sqrt{B(t)}\bigr\vert ^{\beta}\Bigr\} ^{\frac{1}{q}} \biggl( \int _{a}^{b}\bigl\vert \sqrt{B(t)}\bigr\vert ^{\alpha} \Delta t \biggr)^{\frac{1}{p}} \biggl( \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert M^{q}\Delta t \biggr)^{\frac{1}{q}} \biggr]. $$

Thus,

$$\int_{a}^{b}\bigl\vert A(t)\bigr\vert \Delta t+\Bigl\{ \max_{a\leq t\leq b}\bigl\vert \sqrt {B(t)}\bigr\vert ^{\beta}\Bigr\} ^{\frac{1}{q}} \biggl( \int_{a}^{b}\bigl\vert \sqrt{B(t)}\bigr\vert ^{\alpha} \Delta t \biggr)^{\frac{1}{p}} \biggl( \int_{a}^{b}\bigl\vert C_{1}(t)\bigr\vert \Delta t \biggr)^{\frac{1}{q}}\geq2. $$

This completes the proof of Theorem 3.5. □