Introduction

Each year over 10 million people globally suffer traumatic brain injury (TBI) [1], which is a leading cause of brain disorders and disability worldwide. Road traffic injuries (RTI), which account for 60% of TBI cases, ranked as 8th leading cause of death in 2015 (1.2 million deaths globally); an increase of about 19.7% since 1990 [2]. Other important contributors to TBI include falls (20–30%), and violence (10%) [2, 3].

TBI incidence in sub-Saharan Africa (150–170/100,000) is much higher than the global incidence (106/100,000) [3]. Similarly, incidence of intracranial short-term injuries due to RTI and violence in sub-Saharan Africa are 1.47 and 3.34 times higher than global rates respectively. Whereas incidence rates of intracranial long-term injuries due to war, violence and other unintentional injuries are 5.44, 3.37 and 1.86 times higher than their respective global incidence rates. Rapid motorization and conflicts have been attributed as important causes of the relatively higher TBI incidence in the region [4].

As with majority of sub-Saharan countries, data on the burden of injury and TBI in Uganda is scarce. According to a Ministry of Health report, the capital city Kampala had an estimated annual injury incidence of 116/1000, an injury mortality rate of 220/100,000, an incidence of injury leading to disability of 23/1000, and incidence of non-fatal injuries of 2.8/1000 [5]. Facility-based studies from Uganda estimated the cumulative incidence of TBI hospital admissions at 89/100,000, with alarming figures for TBI-related mortality between 45.3 and 75% [4, 6,7,8].

The number of deaths from RTI in Uganda has doubled from 3059 in 1990 to nearly 7800 in 2015 [2]. With a growth rate of 3.3%, the population of the capital city Kampala, continues to rise, leading to greater numbers of vehicles and pedestrians on roads, and a resultant increase in road injuries and TBI incidence [9,10,11]. The day commuter population in Kampala is estimated at about 700,000 people, creating a risk pool of over 2 million people each day on the roads. As a result, approximately 9000 crashes are recorded each year in Kampala, which amounts to 25 crashes per day [12].

To better address the growing TBI burden, there are many critical gaps in knowledge that need to be addressed. Lack of good quality data on TBI hinders understanding of the magnitude of the burden and poses a barrier in identifying risks factors, vulnerable groups, and the impact of interventions. This issue was highlighted in a recent hospital-based study on severe TBI cases, that called for a need for systematic and efficient data collection that could have a positive impact on improving patient outcomes [4]. Thus, the overall goal of this paper is to introduce the development of an internet-based TBI registry in Uganda, based on an injury surveillance framework. The paper describes steps and components of the registry, Kampala internet-based Traumatic Brain Injury Registry (KiTBIR), which is the first of its kind in Uganda to understand the hospital-based TBI burden, risk factors in different populations and age groups, documentation of care processes, and indicators for quality of care. It is expected that the evidence generated from KiTBIR will facilitate the development of TBI management guidelines in resource-constraint settings.

Main text

The registry development was guided by the core principles of injury surveillance, and hospital-based context. The evaluation framework for injury surveillance systems (EFISS) presented by Mitchell et al. [13] describes the scope of the surveillance system in a four-step approach: (1) identifying characteristics that assess a surveillance system, (2) a thorough review of identified characteristics/variables based on adapted specific measurable assignable realistic time-related (SMART) criteria, (3) assessment of the proposed variables and system characteristics by an expert panel, and (4) development and application of a rating system [13].

According to EFISS, injury surveillance system should be designed so that it could be evaluated for its data quality, operational characteristics, and practical considerations [13]. These attributes are summarized in Table 1. This paper focuses on the development and implementation of KiTBIR, where EFISS characteristics were adopted from the planning to the development phase of the registry, to be able to systematically monitor and evaluate specific attributes after implementation. Subsequent papers will discuss KiTBIR variables, results, sustainability and scale-up of the registry to other settings.

Table 1 Modified EFISS framework for traumatic brain injury registry in Uganda

A multi-pronged approach was sought for finalizing the content and scope of KiTBIR. The approach involved a comprehensive literature review, identification of core variables, expert consensus meeting to shortlist the variables according to the scope and case definition. These steps are described in detail below:

The identification of potential variables in KiTBIR involved three strategies: (1) Literature review using search terms and MESH headings for “Brain injury AND Africa” and “Brain injury AND registry AND low-and-middle-income countries (LMICs)”. Several databases were searched using these terms including PubMed/Medline, EMBASE, Scopus, Cochrane Reviews, System for Information on Grey Literature, and Global Health Ovid. The purpose of this review was to understand the published literature on characteristics and risk factors in the context of LMIC and sub-Saharan Africa between year 2006 and 2015 (Fig. 1). Twenty-four papers were selected and independently reviewed by two members of the research team. The result was development of a candidate list of TBI variables; (2) United States National Institute of Neurological Disorders and Stroke (NINDS) guidelines were reviewed for case definitions, TBI signs and symptoms; and (3) review of the previous work done by the team on development and implementation of injury surveillance tools and trauma registries [14, 15].

Fig. 1
figure 1

Summary of literature review for identification of core variable for the traumatic brain injury registry

Core variables covered three main areas: risk factors, clinical care, and patient outcomes. These variables provide context-specific details of hospital burden of TBI, care processes and pre-hospital, emergency department (ED) and inpatient interventions. In addition, date/time variables for injury event, hospital presentation, triage and disposition were included to understand potential delays in care provision. Outcomes at discharge from the hospital was based on Glasgow Outcome Scale which has five categories; death, persistent vegetative state, severe disability, moderate disability and good recovery [16]. Scoring systems such as Kampala trauma score (KTS) was also proposed to measure the injury severity, and risk-adjusted outcome comparisons [17,18,19]. The final list of variables is available upon request.

The registry was envisioned to create a foundation for TBI prevention and improving quality of care by embedding indicators and outcomes for injury control, access to hospital care, care processes and outcomes. A multidisciplinary consensus meeting was held to finalize the scope of KiTBIR, core variables, data collection platform, and implementation process. The group consisted of local, regional and international public health practitioners, clinicians including neurosurgeons, injury prevention experts and information technology professionals. Time burden, local healthcare delivery processes, and data collection feasibility was also considered in finalization of the variables. Consensus was developed for the inclusion/exclusion criteria, operational definitions, and key performance indicators. Additionally, approaches to get reliable information, data collection procedures, training needs and ethical considerations were also established.

The final KiTBIR registry consists of six broad sections with 97 variables. Each section covers 5–29 questions, which are illustrated in Table 2 and include patients’ demographics, pre-hospital and hospital assessment and care, external causes of injuries, injury severity measured by KTS and revised trauma score, and patient outcome. KiTBIR provides an opportunity for validation of KTS in TBI population of Uganda.

Table 2 Sections and variables in KiTBIR

The registry was digitized using a m-health platform that was developed and pretested according to the local needs and resources available for TBI patients at the tertiary-care hospital in Kampala, Uganda.

In the digital platform, the flow of the information and organization of different sections was based on the usual course of patient in a tertiary-care hospital of Uganda (Additional file 1: Figure S1: patient and data flow for KiTBIR). Patients with TBI typically present to the ED where staff completes initial assessment to assess patient’s condition and injuries, followed by specialty consultation based on the injury severity and need for hospital admission. Patients requiring inpatient admission are moved to neurosurgery ward while patients with less severe injuries are observed and discharged from ED. This patient flow is considered in designing the content and flow of questions in each section of KiTBIR to facilitate data collection.

Several steps were taken to develop a user-friendly and standardized data collection tool. OpenDataKit (https://opendatakit.org), an open source software for mobile data collection, was used and an Aggregate on a cloud server in Uganda was setup. Questionnaires were developed in Microsoft Excel XLSFORM, and uploaded to the Aggregate for data collection. The questionnaires largely consisted of dropdown menus and check boxes, along with mandatory fields such as age, sex, vital signs. The ODK-Collect app was downloaded on the Android tablets, secured through user-specific password, for data collection. Completed data collection forms on the tablet could be uploaded over Wi-Fi or internet connection to the Aggregate on the cloud server. Data quality control measures, confidentiality, and system security were in place. The encryption of the device was supported by elliptic curve cryptography and script; this provided additional security of the data with the ability to remotely activate android device manager to lock or erase information in case of stolen or lost device.

Strengths and limitations

This is one of the first studies designed to collect prospective hospital-based data on TBI patients in a large tertiary-care hospital of a low-income setting, employing electronic data collection methods. KiTBIR demonstrated several advantages: First, it feeds into a surveillance system, documents the hospital-based TBI burden, risk factors, injury mechanisms, outcomes, allows to fill information gaps on the vulnerable populations, and develop strategies for prevention and control [20].

Second, KiTBIR documents care processes and performance indicators in a low-resource setting, that functions with limited infrastructure, human resources, access to care, and efficiency compared to high-income countries [21]. Combining core surveillance measures with hospital-based care processes and outcome, makes KiTBIR a robust tool to perform dual function of surveillance and monitoring quality of care. Development and implementation of clinical management protocols and data-driven policies to improve outcomes of TBI patients in Uganda will be the ultimate impact of the registry.

Third, this hand-held based data collection tool uses innovative approach which could become a foundation for multicenter injury database [22]. Using open-source software and smart electronic devices is the way forward to streamlining data collection in setups lacking electronic medical record systems. The collaborative approach has resulted in understanding local context and developed local capacity for future sustainability and integration of the registry into the current system at the hospital.

Lastly, utilization of the EFISS framework provided the basis of the planning and development of KiTBIR, and ensured that data quality, operational challenges and practical considerations were taken into account. Similar approaches could guide other researchers and clinicians in development of a comprehensive database for injury surveillance and hospital-based registries. The planning and implementation of KiTBIR, based on EFISS provides a proof of concept that low-cost, good quality, reliable injury surveillance systems could be established and help identify targeted strategies to increase the uptake of the system and expand it to other clinical settings.

There are some limitations of this work. First, KiTBIR is designed to collect data on TBI patients from their point of entry to exit from the hospital. In a resource-limited tertiary care setting, tracking patients through their entire course, especially those involving multiple departments and locations, might present a unique challenge. There is lack of centralized information system to update patients’ location or discharge in real time, and this could potentially result in missing information, or loss of patient follow-up after leaving ED.

Second, since this is the first time that tablets are used for data collection in the hospital, there is a risk of loss of data in case of tablet malfunction, theft, etc., if not timely uploaded on the servers. In such instances, the data will not be retrievable. During implementation phase, effort would be made to ensure data submission within 24 h of patient presentation to the ED.

A customized electronic TBI registry will open opportunity to replicate the process in similar settings and contribute to the global agenda of reducing deaths and disabilities from TBI in low-income countries.