1 Introduction and preliminaries

The existence of a fixed point for contractive mappings in partially ordered metric spaces has attracted the attention of many mathematicians (cf. [111] and the references therein). In [3], Bhaskar and Lakshmikantham introduced the notion of a mixed monotone mapping and proved some coupled fixed point theorems for the mixed monotone mapping. Afterwards, Lakshmikantham and Ciric in [11] introduced the concept of a mixed g-monotone mapping and proved coupled coincidence point results for two mappings F and g, where F has the mixed g-monotone property and the functions F and g commute. It is well known that the concept of commuting has been weakened in various directions. One such notion which is weaker than commuting is the concept of compatibility introduced by Jungck [7]. In [5], Choudhury and Kundu defined the concept of compatibility of F and g. The purpose of this paper is to present some coupled coincidence point theorems for a mixed g-monotone mapping in the context of complete metric spaces endowed with a partial order by using altering distance functions which extend some results of [6]. We also present an example which illustrates the results.

Recall that if (X,) is a partially ordered set, then f is said to be non-decreasing if for x,yX, xy, we have fxfy. Similarly, f is said to be non-increasing if for x,yX, xy, we have fxfy. We also recall the used definitions in the present work.

Definition 1.1 [11] (Mixed g-monotone property)

Let (X,) be a partially ordered set, g:XX and F:X×XX. We say that the mapping F has the mixed g-monotone property if F is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its second argument. That is, for any x,yX,

x 1 , x 2 X,g x 1 g x 2 F( x 1 ,y)F( x 2 ,y)
(1)

and

y 1 , y 2 X,g y 1 g y 2 F(x, y 1 )F(x, y 2 ).
(2)

Definition 1.2 [11] (Coupled coincidence fixed point)

Let (x,y)X×X, F:X×XX and g:XX. We say that (x,y) is a coupled coincidence point of F and g if F(x,y)=gx and F(y,x)=gy for x,yX.

Definition 1.3 [11]

Let X be a non-empty set and let F:X×XX and g:XX. We say F and g are commutative if, for all x,yX,

g ( F ( x , y ) ) =F(gx,gy).

Definition 1.4 [5]

The mappings F and g, where F:X×XX and g:XX, are said to be compatible if

lim n d ( g ( F ( x n , y n ) ) , F ( g x n , g y n ) ) =0

and

lim n d ( g ( F ( y n , x n ) ) , F ( g y n , g x n ) ) =0,

whenever { x n } and { y n } are sequences in X such that lim n F( x n , y n )= lim n g x n =x and lim n F( y n , x n )= lim n g y n =y for all x,yX.

Definition 1.5 (Altering distance function)

An altering distance function is a function ψ:[0,)[0,) satisfying

  1. 1.

    ψ is continuous and non-decreasing.

  2. 2.

    ψ(t)=0 if and only if t=0.

2 Existence of coupled coincidence points

Let (X,) be a partially ordered set and suppose that there exists a metric d in X such that (X,d) is a complete metric space. Also, let φ and ϕ be altering distance functions. Now, we are in a position to state our main theorem.

Theorem 2.1 Let F:X×XX be a mapping having the mixed g-monotone property on X such that

φ ( d ( F ( x , y ) , F ( u , v ) ) ) φ ( max ( d ( g x , g u ) , d ( g y , g v ) ) ) ϕ ( max ( d ( g x , g u ) , d ( g y , g v ) ) )
(3)

for all x,y,u,vX with gxgu and gygv. Suppose that F(X×X)g(X), g is continuous, monotone increasing and suppose also that F and g are compatible mappings. Moreover, suppose either

  1. (a)

    F is continuous, or

  2. (b)

    X has the following properties:

  3. (i)

    if a non-decreasing sequence { x n }x, then x n x for all n,

  4. (ii)

    if a non-increasing sequence { y n }y, then y y n for all n.

If there exist x 0 , y 0 X with g x 0 F( x 0 , y 0 ) and g y 0 F( y 0 , x 0 ), then F and g have a coupled coincidence point.

Proof By using F(X×X)g(X), we construct sequences { x n } and { y n } as follows:

g x n + 1 =F( x n , y n )andg y n + 1 =F( y n , x n )for n0.
(4)

We are going to divide the proof into several steps in order to make it easy to read.

Step 1. We will show that g x n g x n + 1 and g y n g y n + 1 for n0.

We use the mathematical induction to show that. From the assumption of the theorem, it follows that g x 0 F( x 0 , y 0 )=g x 1 and g y 0 F( y 0 , x 0 )=g y 1 , so our claim is satisfied for n=0. Now, suppose that our claim holds for some fixed n>0. Since g x n 1 g x n , g y n g y n 1 and F has the mixed g-monotone property, then we get

g x n + 1 =F( x n , y n )F( x n 1 , y n )F( x n 1 , y n 1 )=g x n

and

g y n + 1 =F( y n , x n )F( y n 1 , x n )F( y n 1 , x n 1 )=g y n .

Thus the claim holds for n+1 and by the mathematical induction our claim is proved.

Step 2. We will show that lim n d(g x n ,g x n + 1 )= lim n d(g y n ,g y n + 1 )=0.

In fact, using (3), g x n g x n 1 and g y n g y n 1 , we get

φ ( d ( g x n + 1 , g x n ) ) = φ ( d ( F ( x n , y n ) , F ( x n 1 , y n 1 ) ) ) φ ( max ( d ( g x n , g x n 1 ) , d ( g y n , g y n 1 ) ) ) ϕ ( max ( d ( g x n , g x n 1 ) , d ( g y n , g y n 1 ) ) ) .
(5)

Since ϕ is non-negative, we have

φ ( d ( g x n + 1 , g x n ) ) φ ( max ( d ( g x n , g x n 1 ) , d ( g y n , g y n 1 ) ) ) ,

and since φ is non-decreasing, we have

d(g x n + 1 ,g x n )max ( d ( g x n , g x n 1 ) , d ( g y n , g y n 1 ) ) .
(6)

In the same way, we get the following:

φ ( d ( g y n + 1 , g y n ) ) = φ ( d ( F ( y n , x n ) , F ( y n 1 , x n 1 ) ) ) = φ ( d ( F ( y n 1 , x n 1 ) , F ( y n , x n ) ) ) φ ( max ( d ( g y n 1 , g y n ) , d ( g x n 1 , g x n ) ) ) ϕ ( max ( d ( g y n 1 , g y n ) , d ( g x n 1 , g x n ) ) ) φ ( max ( d ( g x n , g x n 1 ) , d ( g y n , g y n 1 ) ) ) ,
(7)

and hence

d(g y n + 1 ,g y n )max ( d ( g x n , g x n 1 ) , d ( g y n , g y n 1 ) ) .
(8)

Using (6) and (8), we have

max ( d ( g x n + 1 , g x n ) , d ( g y n + 1 , g y n ) ) max ( d ( g x n , g x n 1 ) , d ( g y n , g y n 1 ) ) .

From the last inequality, we notice that the sequence (max(d(g x n + 1 ,g x n ),d(g y n + 1 ,g y n ))) is non-negative decreasing. This implies that there exists r0 such that

lim n max ( d ( g x n + 1 , g x n ) , d ( g y n + 1 , g y n ) ) =r.
(9)

It is easily seen that if φ:[0,)[0,) is non-decreasing, we have φ(max(a,b))=max(φ(a),φ(b)) for a,b[0,) for a,b[0,). Using this, (5) and (7), we obtain

max ( φ ( d ( g x n + 1 , g x n ) ) , φ ( d ( g y n + 1 , g y n ) ) = φ ( max ( d ( g x n + 1 , g x n ) d ( g y n + 1 , g y n ) ) ) φ ( max ( d ( g x n , g x n 1 ) , d ( g y n , g y n 1 ) ) ) ϕ ( max ( d ( g x n , g x n 1 ) d ( g y n , g y n 1 ) ) ) .
(10)

Letting n in the last inequality and using (6), we have

φ(r)φ(r)ϕ(r)φ(r),

and this implies ϕ(r)=0. Thus, using the fact that ϕ is an altering distance function, we have r=0. Therefore,

lim n max ( d ( g x n + 1 , g x n ) , d ( g y n + 1 , g y n ) ) =0.
(11)

Hence, lim n d(g x n ,g x n + 1 )= lim n d(g y n ,g y n + 1 )=0 and this completes the proof of our claim.

Step 3. We will prove that {g x n } and {g y n } are Cauchy sequences.

Suppose that one of the sequences {g x n } or {g y n } is not a Cauchy sequence. This implies that lim n , m d(g x n ,g x m )0 or lim n , m d(g y n ,g y m )0, and hence

lim n , m max ( d ( g x n , g x m ) , d ( g y n , g y m ) ) 0.

This means that there exists ϵ>0, for which we can find subsequences {g x m ( k ) } and {g x n ( k ) } with n(k)>m(k)>k, such that

max ( d ( g x m ( k ) , g x n ( k ) ) , d ( g y m ( k ) , g y n ( k ) ) ) ϵ.
(12)

Further, we can choose n(k) corresponding to m(k) in such a way that it is the smallest integer with n(k)>m(k) and satisfying (12). Then

max ( d ( g x m ( k ) , g x n ( k ) 1 ) , d ( g y m ( k ) , g y n ( k ) 1 ) ) <ϵ.
(13)

Using (3), g x n ( k ) 1 g x m ( k ) 1 and g y n ( k ) 1 g y m ( k ) 1 , we get

φ ( d ( g x n ( k ) , g x m ( k ) ) ) = φ ( d ( F ( x n ( k ) 1 , y n ( k ) 1 ) , F ( x m ( k ) 1 , y m ( k ) 1 ) ) ) φ ( max ( d ( g x n ( k ) 1 , g x m ( k ) 1 ) , d ( g y n ( k ) 1 , g y m ( k ) 1 ) ) ) ϕ ( max ( d ( g x n ( k ) 1 , g x m ( k ) 1 ) , d ( g y n ( k ) 1 , g y m ( k ) 1 ) ) ) ,
(14)

and also we get

φ ( d ( g y n ( k ) , g y m ( k ) ) ) = φ ( d ( F ( y n ( k ) 1 , x n ( k ) 1 ) , F ( y m ( k ) 1 , x m ( k ) 1 ) ) ) = φ ( d ( F ( y m ( k ) 1 , x m ( k ) 1 ) , F ( y n ( k ) 1 , x n ( k ) 1 ) ) ) φ ( max ( d ( g x n ( k ) 1 , g x m ( k ) 1 ) , d ( g y n ( k ) 1 , g y m ( k ) 1 ) ) ) ϕ ( max ( d ( g x n ( k ) 1 , g x m ( k ) 1 ) , d ( g y n ( k ) 1 , g y m ( k ) 1 ) ) ) .
(15)

Combining (14) and (15), we obtain

max ( φ ( d ( g x n ( k ) , g x m ( k ) ) ) , φ ( d ( g y n ( k ) , g y m ( k ) ) ) ) φ ( max ( d ( g x n ( k ) 1 , g x m ( k ) 1 ) , d ( g y n ( k ) 1 , g y m ( k ) 1 ) ) ) ϕ ( max ( d ( g x n ( k ) 1 , g x m ( k ) 1 ) , d ( g y n ( k ) 1 , g y m ( k ) 1 ) ) ) .
(16)

Using the triangular inequality and (13), we get

d ( g x n ( k ) , g x m ( k ) ) d ( g x n ( k ) , g x n ( k ) 1 ) + d ( g x n ( k ) 1 , g x m ( k ) ) < d ( g x n ( k ) , g x n ( k ) 1 ) + ϵ
(17)

and

d ( g y n ( k ) , g y m ( k ) ) d ( g y n ( k ) , g y n ( k ) 1 ) + d ( g y n ( k ) 1 , g y m ( k ) ) < d ( g y n ( k ) , g y n ( k ) 1 ) + ϵ .
(18)

Using (12), (17) and (18), we have

ϵ max ( d ( g x n ( k ) , g x m ( k ) ) , d ( g y n ( k ) , g y m ( k ) ) ) max ( d ( g x n ( k ) , g x n ( k ) 1 ) , d ( g y n ( k ) , g y n ( k ) 1 ) ) + ϵ .

Letting k in the last inequality and using (11), we have

lim k max ( d ( g x n ( k ) , g x m ( k ) ) , d ( g y n ( k ) , g y m ( k ) ) ) =ϵ.
(19)

Similarly, using the triangular inequality and (13), we have

d ( g x n ( k ) 1 , g x m ( k ) 1 ) d ( g x n ( k ) 1 , g x m ( k ) ) + d ( g x m ( k ) , g x m ( k ) 1 ) < ϵ + d ( g x m ( k ) , g x m ( k ) 1 )
(20)

and

d ( g y n ( k ) 1 , g y m ( k ) 1 ) d ( g y n ( k ) 1 , g y m ( k ) ) + d ( g y m ( k ) , g y m ( k ) 1 ) < ϵ + d ( g y m ( k ) , g y m ( k ) 1 ) .
(21)

Combining (20) and (21), we obtain

max ( d ( g x n ( k ) 1 , g x m ( k ) 1 ) , d ( g y n ( k ) 1 , g y m ( k ) 1 ) ) < max ( d ( g x m ( k ) , g x m ( k ) 1 ) , d ( g y m ( k ) , g y m ( k ) 1 ) ) + ϵ .
(22)

Using the triangular inequality, we have

d ( g x n ( k ) , g x m ( k ) ) d ( g x n ( k ) , g x n ( k ) 1 ) + d ( g x n ( k ) 1 , g x m ( k ) 1 ) + d ( g x m ( k ) 1 , g x m ( k ) )

and

d ( g y n ( k ) , g y m ( k ) ) d ( g y n ( k ) , g y n ( k ) 1 ) + d ( g y n ( k ) 1 , g y m ( k ) 1 ) + d ( g y m ( k ) 1 , g y m ( k ) ) .

Using the two last inequalities and (12), we have

ϵ max ( d ( g x n ( k ) , g x m ( k ) ) , d ( g y n ( k ) , g y m ( k ) ) ) max ( d ( g x n ( k ) , g x n ( k ) 1 ) , d ( g y n ( k ) , g y n ( k ) 1 ) ) + max ( d ( g x n ( k ) 1 , g x m ( k ) 1 ) , d ( g y n ( k ) 1 , g y m ( k ) 1 ) ) + max ( d ( g x m ( l ) 1 , g x m ( k ) ) , d ( g y m ( k ) 1 , g y m ( k ) ) ) .
(23)

Using (22) and (23), we get

ϵ max ( d ( g x n ( k ) , g x n ( k ) 1 ) , d ( g y n ( k ) , g y n ( k ) 1 ) ) max ( d ( g x m ( k ) 1 , g x m ( k ) ) , d ( g y m ( k ) 1 , g y m k ) ) ) max ( d ( g x n ( k ) 1 , g x m ( k ) 1 ) , d ( g y n ( k ) 1 , g y m ( k ) 1 ) ) < max ( d ( g x m ( k ) , g x m ( k ) 1 ) , d ( g y m ( k ) , g y m ( k ) 1 ) ) + ϵ .

Letting k in the last inequality and using (11), we obtain

lim k max ( d ( g x n ( k ) 1 , g x m ( k ) 1 ) , d ( g y n ( k ) 1 , g y m ( k ) 1 ) ) =ϵ.
(24)

Finally, letting k in (15) and using (18), (23) and the continuity of φ and ϕ, we have

φ(ϵ)φ(ϵ)ϕ(ϵ)φ(ϵ)

and, consequently, ϕ(ϵ)=0. Since ϕ is an altering distance function, we get ϵ=0, and this is a contradiction. This proves our claim.

Since X is a complete metric space, there exist x,yX such that

lim n F( x n , y n )= lim n g x n =xand lim n F( y n , x n )= lim n g y n =y.
(25)

Since F and g are compatible mappings, we have

lim n d ( g ( F ( x n , y n ) ) , F ( g x n , g y n ) ) =0
(26)

and

lim n d ( g ( F ( y n , x n ) ) , F ( g y n , g x n ) ) =0.
(27)

We now show that gx=F(x,y) and gy=F(y,x). Suppose that assumption (a) holds. For all n0, we have

d ( g x , F ( g x n , g y n ) ) d ( g x , g ( F ( x n , y n ) ) ) +d ( g ( F ( x n , y n ) ) , F ( g x n , g y n ) ) .

Taking the limit as n, using (3), (25), (26) and the fact that F and g are continuous, we have d(gx,F(x,y))=0. Similarly, using (3), (25), (27) and the fact that F and g are continuous, we have d(gy,F(y,x))=0. Hence, we get

gx=F(x,y)andgy=F(y,x).

Finally, suppose that (b) holds. In fact, since {g x n } is non-decreasing and g x n x and {g y n } is non-increasing and g y n y, by our assumption, g x n x and g y n y for every nN.

Applying (3), we have

φ ( d ( F ( x , y ) , F ( x n , y n ) ) ) φ ( max ( d ( g x , g x n ) , d ( g y , g y n ) ) ) ϕ ( max ( d ( g x , g x n ) , d ( g y , g y n ) ) φ ( max ( d ( g x , g x n ) , d ( g y , g y n ) ) ) ,

and as φ is non-decreasing, we obtain

d ( F ( x , y ) , F ( x n , y n ) ) max ( d ( g x , g x n ) , d ( g y , g y n ) ) .
(28)

Using the triangular inequality and (28), we get

d ( g x , F ( x , y ) ) lim n d ( g x , g g x n + 1 ) + d ( g g x n + 1 , F ( x , y ) ) = lim n d ( g x , g g x n + 1 ) + d ( F ( x , y ) , g F ( x n , y n ) ) = lim n d ( g x , g g x n + 1 ) + d ( F ( x , y ) , F ( g x n , g y n ) ) d ( g x , g g x n + 1 ) + max ( d ( g x , g g x n ) , d ( g y , g g y n ) ) .

As x n x and y n y, taking n in the last inequality, we have

d ( g x , F ( x , y ) ) =0,

and, consequently, F(x,y)=gx.

Using a similar argument, it can be proved that gy=F(y,x) and this completes the proof. □

Corollary 2.1 [6]

Let (X,) be a partially ordered set and suppose that there exists a metric d in X such that (X,d) is a complete metric space. Let F:X×XX be a mapping having the mixed monotone property on X such that

φ ( d ( F ( x , y ) , F ( u , v ) ) ) φ ( max ( d ( x , u ) , d ( y , v ) ) ) ϕ ( max ( d ( x , u ) , d ( y , v ) ) )

for all x,y,u,vX with xu and yv, where φ and ϕ are altering distance functions. Moreover, suppose either

  1. (a)

    F is continuous, or

  2. (b)

    X has the following properties:

  3. (i)

    if a non-decreasing sequence { x n }x, then x n x for all n,

  4. (ii)

    if a non-increasing sequence { y n }y, then y y n for all n.

If there exist x 0 , y 0 X with x 0 F( x 0 , y 0 ) and y 0 F( y 0 , x 0 ), then F has a coupled fixed point.

Corollary 2.2 [3]

Let (X,) be a partially ordered set and suppose that there exists a metric d in X such that (X,d) is a complete metric space. Let F:X×XX be a mapping having the mixed monotone property on X such that

d ( F ( x , y ) , F ( u , v ) ) k 2 [ d ( x , u ) + d ( y , v ) ]

for all x,y,u,vX with xu and yv. Moreover, suppose either

  1. (a)

    F is continuous, or

  2. (b)

    X has the following properties:

  3. (i)

    if a non-decreasing sequence { x n }x, then x n x for all n,

  4. (ii)

    if a non-increasing sequence { y n }y, then y y n for all n.

If there exist x 0 , y 0 X with x 0 F( x 0 , y 0 ) and y 0 F( y 0 , x 0 ), then F has a coupled fixed point.

Proof Let φ=identity and ϕ=(1 1 k )φ and g is the identity function. Then applying Theorem 2.1, we get Corollary 2.2. □

3 Uniqueness of the coupled coincidence point

In this section, we prove the uniqueness of the coupled coincidence point. Note that if (X,) is a partially ordered set, then we endow the product X×X with the following partial order relation, for all (x,y),(u,v)X×X,

(x,y)(u,v)xu,yv.

Theorem 3.1 In addition to the hypotheses of Theorem 2.1, suppose that for every (x,y), (z,t) in X×X, there exists a (u,v) in X×X that is comparable to (x,y) and (z,t), then F and g have a unique coupled coincidence point.

Proof Suppose that (x,y) and (z,t) are coupled coincidence points of F, that is, gx=F(x,y), gy=F(x,y), gz=f(z,t) and gt=F(t,z).

Let (u,v) be an element of X×X comparable to (x,y) and (z,t). Suppose that (x,y)(u,v) (the proof is similar in the other case).

We construct the sequences {g u n } and {g v n } as follows:

u 0 =u, v 0 =v,g u n + 1 =F( u n , v n ),g v n + 1 =F( v n , u n ).

We claim that (x,y)( u n , v n ) for each nN. In fact, we will use mathematical induction.

For n=0, as (x,y)(u,v), this means u 0 =ux and yv= v 0 and, consequently, ( u 0 , v 0 )(x,y). Suppose that (x,y)( u n , v n ), then since F has the mixed g-monotone property and since g is monotone increasing, we get

g u n + 1 = F ( u n , v n ) F ( x , v n ) F ( x , y ) = g x , g v n + 1 = F ( v n , u n ) F ( y , u n ) F ( y , x ) = g y ,

and this proves our claim.

Now, since u n x and u n y, using (3), we get

φ ( d ( g x , g u n ) ) = φ ( d ( F ( x , y ) , F ( u n 1 , v n 1 ) ) ) φ ( max ( d ( g x , g u n 1 ) , d ( g y , g v n 1 ) ) ) ϕ ( max ( d ( g x , g u n 1 ) , d ( g y , g v n 1 ) ) ) φ ( max ( d ( g x , g u n 1 ) , d ( g y , g v n 1 ) ) ) .
(29)

In the same way, we have

φ ( d ( g y , g v n ) ) = φ ( d ( F ( y , x ) , F ( v n 1 , u n 1 ) ) ) = φ ( d ( F ( v n 1 , u n 1 ) , F ( y , x ) ) ) φ ( max ( d ( g x , g u n 1 ) , d ( g y , g v n 1 ) ) ) ϕ ( max ( d ( g x , g u n 1 ) , d ( g y , g v n 1 ) ) ) φ ( max ( d ( g x , g u n 1 ) , d ( g y , g v n 1 ) ) ) .
(30)

Using (29) and (30) and the fact that ϕ is non-decreasing, we get

φ ( max ( d ( g x , g u n ) , d ( g y , g v n ) ) ) = max ( φ ( d ( g x , g u n ) , d ( g y , g v n ) ) ) φ ( max ( d ( g x , g u n 1 , d ( g y , g v n 1 ) ) ) ϕ ( max ( d ( g x , g u n 1 ) , d ( g y , g v n 1 ) ) ) φ ( max ( d ( g x , g u n 1 ) , d ( g y , g v n 1 ) ) ) .
(31)

Using the last inequality and the fact that φ is non-decreasing, we have

max ( d ( g x , g u n ) , d ( g y , g v n ) ) max ( d ( g x , g u n 1 ) , d ( g y , g v n 1 ) ) .

Thus the sequence (max(d(gx,g u n ),d(gy,g v n ))) is decreasing and non-negative, and hence, for certain r0,

lim n ( max ( d ( g x , g u n ) , d ( g y , g v n ) ) ) =r.
(32)

Using (32) and letting n in (31), we have

φ(r)φ(r)ϕ(r)<φ(r).

This gives ϕ(r)=0 and hence r=0.

Finally, since lim n (max(d(gx,g u n ),d(gy,g v n )))=0, we have g u n gx and g v n gy. Using a similar argument for (z,t), we can get g u n gz and g v n gt, and the uniqueness of the limit gives gx=gz and gy=gt. This completes the proof. □

Theorem 3.2 Under the assumptions of Theorem 2.1, suppose that x 0 and y 0 are comparable, then the coupled coincidence point (x,y)X×X satisfies x=y.

Proof Assume x 0 y 0 (a similar argument applies to y 0 x 0 ).

We claim that x n y n for all n, where g x n 1 =F( x n , y n ) and g y n + 1 =F( y n , x n ).

Obviously, the inequality is satisfied for n=0. Suppose x n y n . Using the mixed g-monotone property of F, we have

g x n + 1 =F( x n , y n )F( y n , y n )F( y n , x n )=g y n + 1 ,

and since g is non-decreasing, this proves our claim.

Now, using (3) and x n y n , we get

φ ( d ( g x n + 1 , g y n + 1 ) ) = φ ( d ( g y n + 1 , g x n + 1 ) ) = φ ( d ( F ( y n , x n ) , F ( x n , y n ) ) ) φ ( d ( g x n , g y n ) ) ϕ ( d ( g x n , g y n ) ) φ ( d ( g x n , g y n ) ) ,
(33)

and since φ is non-decreasing, we get

d(g x n + 1 ,g y n + 1 )d(g x n ,g y n ).

We notice that the sequence d(g x n ,g y n ) is decreasing. Thus, lim n d(g x n ,g y n )=r for certain r>0. Hence,

φ(r)φ(r)ϕ(r)φ(r),

and this gives us r=0.

Since g x n x, g y n y and lim n d(g x n ,g y n )=0, we have

0= lim n d(g x n ,g y n )=d(g x n ,g y n )=d ( lim n g x n , lim n g y n ) =d(x,y)

and thus x=y. This completes the proof. □

4 Example

The following example illustrates our main result.

Example 4.1 Let X=[0,1]. Then (X,) is a partially ordered set with the natural ordering of real numbers. Let

d(x,y)=|xy|for x,y[0,1].

Then (X,d) is a complete metric space. Let g:XX be defined as

g(x)= x 2 for all xX,

and let F:X×XX be defined as

F(x,y)={ x 2 y 2 5 if  x , y [ 0 , 1 ] , x y , 0 if  x < y .

Then, F satisfies the mixed g-monotone property.

Let φ:[0,)[0,) be defined as

φ(t)= 1 3 tfor t[0,),

and let ϕ:[0,)[0,) be defined as

ϕ(t)= 1 5 tfor t[0,).

Let { x n } and { y n } be two sequences in X such that lim n F( x n , y n )=a, lim n g x n =a, lim n F( y n , x n )=b and lim n g y n =b. Then, obviously, a=0 and b=0. Now, for all n0,

g ( x n ) = x n 2 , g ( y n ) = y n 2 , F ( x n , y n ) = { x n 2 y n 2 5 if  x n y n , 0 if  x n < y n .

and

F( y n , x n )={ y n 2 x n 2 5 if  y n x n , 0 if  y n < x n .

Then it follows that

lim n d ( g ( F ( x n , y n ) ) , F ( g x n , g y n ) ) =0

and

lim n d ( g ( F ( y n , x n ) ) , F ( g y n , g x n ) ) =0.

Hence, the mappings F and g are compatible in X. Also, x 0 =0 and y 0 =c (c>0) are two points in X such that

g( x 0 )=g(0)=0=F(0,c)=F( x 0 , y 0 )

and

g( y 0 )=g(c)= c 2 c 2 5 =F(c,0)=F( y 0 , x 0 ).

We next verify the contraction of Theorem 2.1. We take x,y,u,v,X such that gxgu and gygv, that is, x 2 u 2 and y 2 v 2 .

We consider the following cases.

Case 1. xy, uv. Then

φ ( d ( F ( x , y ) , F ( u , v ) ) ) = 1 3 [ d ( F ( x , y ) , F ( u , v ) ] = 1 3 [ d ( x 2 y 2 5 , u 2 v 2 5 ) ] = 1 3 | ( x 2 y 2 ) ( u 2 v 2 ) 5 | 1 3 | x 2 u 2 | + | y 2 v 2 | 5 = 2 15 ( d ( g x , g u ) + d ( g y , g v ) 2 ) 2 15 [ max ( d ( g x , g u ) , d ( g y , g v ) ] 1 3 [ max ( d ( g x , g u ) , d ( g y , g v ) ] 1 5 [ max ( d ( g x , g u ) , d ( g y , g v ) ] = φ ( max { d ( g x , g u ) , d ( g y , g v ) } ) ϕ ( max { d ( g x , g u ) , d ( g y , g v ) } ) .

Case 2. xy, u<v Then

φ ( d ( F ( x , y ) , F ( u , v ) ) ) = 1 3 [ d ( F ( x , y ) , F ( u , v ) ] = 1 3 [ d ( x 2 y 2 5 , 0 ) ] = 1 3 | x 2 y 2 | 5 1 3 | v 2 + x 2 y 2 u 2 | 5 = 1 3 | ( v 2 y 2 ) ( u 2 x 2 ) | 5 1 3 | v 2 y 2 | + | u 2 x 2 | 5 = 1 3 | u 2 x 2 | + | y 2 v 2 | 5 = 2 15 ( | u 2 x 2 | + | y 2 v 2 | 2 ) = 2 15 ( d ( g x , g u ) + d ( g y , g v ) 2 ) 2 15 ( max { d ( g x , g u ) , d ( g y , g v ) } ) = 1 3 ( max { d ( g x , g u ) , d ( g y , g v ) } ) 1 5 ( max { d ( g x , g u ) , d ( g y , g v ) } ) = φ ( max { d ( g x , g u ) , d ( g y , g v ) } ) ϕ ( max { d ( g x , g u ) , d ( g y , g v ) } ) .

Case 3. x<y and uv. Then

φ ( d ( F ( x , y ) , F ( u , v ) ) ) = 1 3 [ d ( 0 , u 2 v 2 5 ) ] = 1 3 | u 2 v 2 | 5 = 1 3 | u 2 + x 2 v 2 x 2 | 5 = 1 3 | ( x 2 v 2 ) + ( u 2 x 2 ) | 5 ( since  y > x ) 1 3 | y 2 v 2 | + | u 2 x 2 | 5 = 2 15 ( | u 2 x 2 | + | y 2 v 2 | 2 ) = 2 15 ( d ( g x , g u ) + d ( g y , g v ) 2 ) 2 15 ( max { d ( g x , g u ) , d ( g y , g v ) } ) = 1 3 ( max { d ( g x , g u ) , d ( g y , g v ) } ) 1 5 ( max { d ( g x , g u ) , d ( g y , g v ) } ) = φ ( max { d ( g x , g u ) , d ( g y , g v ) } ) ϕ ( max { d ( g x , g u ) , d ( g y , g v ) } ) .

Case 4. x<y and u<v with x 2 u 2 and y 2 v 2 . Then F(x,y)=0 and F(u,v)=0, that is,

φ ( d ( F ( x , y ) , F ( u , v ) ) ) =φ ( d ( 0 , 0 ) ) =φ(0)=0.

Obviously, the contraction of Theorem 2.1 is satisfied.