Skip to main content
Log in

Event coincidence analysis for quantifying statistical interrelationships between event time series

On the role of flood events as triggers of epidemic outbreaks

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Studying event time series is a powerful approach for analyzing the dynamics of complex dynamical systems in many fields of science. In this paper, we describe the method of event coincidence analysis to provide a framework for quantifying the strength, directionality and time lag of statistical interrelationships between event series. Event coincidence analysis allows to formulate and test null hypotheses on the origin of the observed interrelationships including tests based on Poisson processes or, more generally, stochastic point processes with a prescribed inter-event time distribution and other higher-order properties. Applying the framework to country-level observational data yields evidence that flood events have acted as triggers of epidemic outbreaks globally since the 1950s. Facing projected future changes in the statistics of climatic extreme events, statistical techniques such as event coincidence analysis will be relevant for investigating the impacts of anthropogenic climate change on human societies and ecosystems worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Rahmstorf, D. Coumou, Proc. Natl. Acad. Sci. USA 108, 17905 (2011)

    Article  ADS  Google Scholar 

  2. D. Coumou, S. Rahmstorf, Nat. Clim. Change 2, 491 (2012)

    ADS  Google Scholar 

  3. T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2013)

  4. A. Rammig, M. Wiedermann, J.F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, M.D. Mahecha, Biogeosciences 12, 373 (2015)

    Article  ADS  Google Scholar 

  5. C.F. Schleussner, J.F. Donges, R.V. Donner, H.J. Schellnhuber, in review (2016)

  6. A. Kuhn, M. Hennrich, G. Rempe, Phys. Rev. Lett. 89, 067901 (2002)

    Article  ADS  Google Scholar 

  7. R.Q. Quiroga, T. Kreuz, P. Grassberger, Phys. Rev. E 66, 041904 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. E.N. Brown, R.E. Kass, P.P. Mitra, Nat. Neurosci. 7, 456 (2004)

    Article  Google Scholar 

  9. Y. Wu, C. Zhou, J. Xiao, J. Kurths, H.J. Schellnhuber, Proc. Natl. Acad. Sci. USA 107, 18803 (2010)

    Article  ADS  Google Scholar 

  10. S.M. Hsiang, K.C. Meng, M.A. Cane, Nature 476, 438 (2011)

    Article  ADS  Google Scholar 

  11. S.M. Hsiang, M. Burke, E. Miguel, Science 341, 1235367 (2013)

    Article  Google Scholar 

  12. S.M. Hsiang, M. Burke, Clim. Change 123, 39 (2014)

    Article  Google Scholar 

  13. H.J. Schellnhuber, B. Hare, O. Serdeczny, M. Schaeffer, S. Adams, F. Baarsch, S. Schwan, D. Coumou, A. Robinson, M. Vieweg, et al., Turn down the heat: climate extremes, regional impacts, and the case for resilience (International Bank for Reconstruction and Development, World Bank, 2013)

  14. P.J. Brockwell, R.A. Davies, Time series: theory and methods, 2nd edn. (Springer, New York, 2002)

  15. H. Kantz, T. Schreiber, Nonlinear time series analysis, 2nd edn. (Cambridge University Press, Cambridge, 2004)

  16. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization: a universal concept in nonlinear sciences (Cambridge University Press, Cambridge, 2001)

  17. T. Kreuz, F. Mormann, R.G. Andrzejak, A. Kraskov, K. Lehnertz, P. Grassberger, Physica D 225, 29 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Kreuz, J.S. Haas, A. Morelli, H.D.I. Abarbanel, A. Politi, J. Neurosci. Meth. 165, 151 (2007)

    Article  Google Scholar 

  19. J. Dauwels, F. Vialatte, T. Weber, A. Cichocki, in Advances in Neuro-Information Processing (Springer, Berlin Heidelberg, 2009), Vol. 5506 of Lecture Notes in Computer Science, p. 177

  20. N. Malik, B. Bookhagen, N. Marwan, J. Kurths, Clim. Dyn. 39, 971 (2012)

    Article  Google Scholar 

  21. J.F. Donges, I. Petrova, A. Loew, N. Marwan, J. Kurths, Clim. Dyn. 45, 2407 (2015)

    Article  Google Scholar 

  22. V. Stolbova, P. Martin, B. Bookhagen, N. Marwan, J. Kurths, Nonlin. Proc. Geophys. 21, 901 (2014)

    Article  ADS  Google Scholar 

  23. N. Boers, B. Bookhagen, H.M.J. Barbosa, N. Marwan, J. Kurths, J.A. Marengo, Nat. Comm. 5, 5199 (2014)

    Article  ADS  Google Scholar 

  24. A. Rheinwalt, N. Boers, N. Marwan, J. Kurths, P. Hoffmann, F.W. Gerstengarbe, P. Werner, Clim. Dyn. 46, 1065 (2015)

    Article  Google Scholar 

  25. J.F. Donges, R.V. Donner, M.H. Trauth, N. Marwan, H.J. Schellnhuber, J. Kurths, Proc. Natl. Acad. Sci. USA 108, 20422 (2011)

    Article  ADS  Google Scholar 

  26. J.F. Siegmund, N. Siegmund, R.V. Donner, preprint [arXiv:1603.05038][stat.ME] (2016)

  27. J. Moller, R.P. Waagepetersen, Statistical inference and simulation for spatial point processes (CRC Press, 2003)

  28. P.J. Diggle, in Statistical methods for spatio-temporal systems, edited by B. Finkenstädt, L. Held, V. Isham (CRC Press, 2007), Vol. 107 of Monographs on Statistics and Applied Probability, p. 1

  29. J. Zscheischler, M.D. Mahecha, S. Harmeling, M. Reichstein, Ecol. Inform. 15, 66 (2013)

    Article  Google Scholar 

  30. T. Schreiber, A. Schmitz, Physica D 142, 346 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  31. H.H. Jo, J.I. Perotti, K. Kaski, J. Kertesz, Phys. Rev. E 92, 022814 (2015)

    Article  ADS  Google Scholar 

  32. J.F. Siegmund, M. Wiedermann, J.F. Donges, R.V. Donner, Biogeosci. Discuss. 12, 18389 (2015)

    Article  ADS  Google Scholar 

  33. E.T. Jaynes, G.L. Bretthorst, Probability theory: the logic of science (Cambridge University Press, Cambridge, 2003)

  34. S. Picoli, M. del Castillo-Mussot, H.V. Ribeiro, E.K. Lenzi, R.S. Mendes, Sci. Rep. 4, 4773 (2014)

    Article  ADS  Google Scholar 

  35. Á . Corral, Phys. Rev. Lett. 92, 108501 (2004)

    Article  ADS  Google Scholar 

  36. J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, et al., Chaos 25, 113101 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. P.M. Dixon, in Encyclopedia of environmetrics (Wiley Online Library, 2006)

  38. D.H. Perkel, G.L. Gerstein, G.P. Moore, Biophys. J. 7, 419 (1967)

    Article  Google Scholar 

  39. P. Diaconis, F. Mosteller, J. Am. Stat. Assoc. 84, 853 (1989)

    Article  MathSciNet  Google Scholar 

  40. D. Zaborov, Phys. Atom. Nucl. 72, 1537 (2009)

    Article  ADS  Google Scholar 

  41. M. Baumgartner, A. Thiem, The R Journal 7, 176 (2015)

    Google Scholar 

  42. D. Campbell-Lendrum, D.D. Chadee, Y. Honda, L. Qiyong, J.M. Olwoch, B. Revich, R. Sauerborn, in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, M. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, et al. (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2014), Chap. 11, p. 709

  43. D. Guha-Sapir, R. Below, P. Hoyois, EM-DAT: International Disaster Database, – www.emdat.be (Université Catholique de Louvain, Brussels, Belgium)

  44. K.J. Rothman, Epidemiology 1, 43 (1990)

    Article  Google Scholar 

  45. T.V. Perneger, Brit. Med. J. 316, 1236 (1998)

    Article  Google Scholar 

  46. S. Doocy, A. Daniels, S. Murray, T.D. Kirsch, PLoS Curr. 5, 1 (2013)

    Google Scholar 

  47. M. Ahern, R.S. Kovats, P. Wilkinson, R. Few, F. Matthies, Epidemiol. Rev. 27, 36 (2005), ISSN 0193936X

    Article  Google Scholar 

  48. K. Alderman, L.R. Turner, S. Tong, Environ. Int. 47, 37 (2012)

    Article  Google Scholar 

  49. J.T. Watson, M. Gayer, M.A. Connolly, Emerg. Infect. Dis. 13, 1 (2007)

    Article  Google Scholar 

  50. N.W. Arnell, S.N. Gosling, Clim. Change 134, 387 (2016)

    Article  Google Scholar 

  51. Y. Hirabayashi, R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, S. Kanae, Nat. Clim. Change 3, 816 (2013)

    Article  ADS  Google Scholar 

  52. D.D. Saulnier, K. Brolin, Int. J. Public Health 60, 781 (2015)

    Article  Google Scholar 

  53. S. Suzuki, Y. Hirata, K. Aihara, Int. J. Bifurcation Chaos 20, 3699 (2010)

    Article  ADS  Google Scholar 

  54. J.F. Siegmund, T.G.M. Sanders, I. Heinrich, E. van der Maaten, S. Simard, G. Helle, R.V. Donner, Frontiers in Plant Science (in review) (2016)

  55. J. Runge, V. Petoukhov, J.F. Donges, J. Hlinka, N. Jajcay, M. Vejmelka, D. Hartman, N. Marwan, M. Paluš, J. Kurths, Nat. Comm. 6, 8502 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.F. Donges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donges, J., Schleussner, CF., Siegmund, J. et al. Event coincidence analysis for quantifying statistical interrelationships between event time series. Eur. Phys. J. Spec. Top. 225, 471–487 (2016). https://doi.org/10.1140/epjst/e2015-50233-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-50233-y

Navigation