Skip to main content
Log in

Complex dynamics in a modified disc dynamo: A nonlinear approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Comment to this article was published on 29 October 2018

Abstract.

In this article, the complex dynamics of a modified dynamo is studied in detail. A modified disc dynamo is a self-existing disc dynamo that is supposed to be the cause of the magnetic field of Earth, Sun and stars. The stability analysis and chaoticity of the attractor of the modified disc dynamo is discussed in detail. More precisely, using the Lyapunov coefficient, it is proved that the modified disc dynamo system has a subcritical Hopf bifurcation for a specific set of parameters. To strengthen the analytical results, numerical continuation is used to investigate subcritical criteria by computing a Hopf bifurcation diagram. In the process of numerical continuation, some interesting features of the modified disc dynamo are revealed. Subcritical Hopf bifurcation occurs at two points due to the symmetry of equilibrium points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Strogatz, Nonlinear Dynamics and Chaos: With Application to Physics, Biology, Chemistry, and Engineering (Westview, New York, 2000)

  2. X.F. Li, Y.D. Chu, J.G. Zhang, Y.X. Chang, Chaos, Solitons Fractals 49, 2360 (2009)

    Article  ADS  Google Scholar 

  3. S.T. Kingni, S. Jafari, H. Simo, P. Woafo, Eur. Phys. J. Plus 129, 76 (2014)

    Article  Google Scholar 

  4. K.T. Alligood, T.D. Sauer, J.A. Yorke, An Introduction to Dynamical Systems (Springer Verlag, New York, 1997)

  5. X. Wang, Chaos, Solitons Fractals 42, 2208 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. Q. Gao, J.H. Ma, Nonlinear Dyn. 58, 209 (2009)

    Article  Google Scholar 

  7. Mauro Bologna, Eur. Phys. J. Plus 131, 386 (2016)

    Article  Google Scholar 

  8. Z. Zhao, L. Yang, L. Chen, Nonlinear Dyn. 63, 521 (2010)

    Article  Google Scholar 

  9. B.Z. Yue, M. Aqeel, Chin. Sci. Bull. 58, 1655 (2013)

    Article  Google Scholar 

  10. K.A. Robbins, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 82 (1977)

  11. K.A. Robbins, PhD Thesis, Massachusetts Institute of Technology (1975)

  12. H.W. Li, M. Wang, Nonlinear Dyn. 71, 235 (2012)

    Article  Google Scholar 

  13. K.J. Zhuang, J. Comput. Nonlinear Dyn. 8, 014501 (2012)

    Article  Google Scholar 

  14. Z.Y. Yan, Chaos, Solitons Fractals 31, 1135 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Y.G. Yu, S.C. Zhang, Chaos, Solitons Fractals 21, 1215 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Sun, L.X. Tian, J. Yin, Int. J. Nonlinear Sci. 1, 49 (2006)

    MathSciNet  Google Scholar 

  17. M. Aqeel, S. Ahmad, Nonlinear Dyn. 84, 755 (2016)

    Article  Google Scholar 

  18. E.C. Bullard, Proc. Cambridge Philos. Soc. 51, 744 (1955)

    Article  ADS  Google Scholar 

  19. W.V.R. Malkus, EOS, Trans. Am. Geophys. Union 53, 617 (1972)

    Google Scholar 

  20. J.E. Marsden, M. McCracken, The Hopf Bifurcation and its Application (Springer, New York, 1976)

  21. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, second edition (Springer-Verlag, New York, 1998)

  22. L.M. Pecora, T.L. Carrol, Phys. Rev. Lett. 64, 821 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Seydel, Practical Bifurcation and Stability Analysis from Equilibrium to Chaos (Springer, New York, 1994)

  24. E.J. Doedel, H.B. Keller, J.P. Kernevez, Int. J. Bifurc. Chaos 1, 493 (1991)

    Article  Google Scholar 

  25. W.J. Beyn, A. Champneys, E.J. Doedel, Y.A. Kuznetsov, W. Govaerts, B. Sandstede, Numerical continuation and computation of normal forms, in Handbook of Dynamical Systems, edited by B. Fiedler (Elsevier, Amsterdam, 2001)

  26. M.J. Friedman, E.J. Doel, SIAM J. Numer. Anal. 28, 789 (1991)

    Article  MathSciNet  Google Scholar 

  27. T.S. Parker, L.O. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer, Berlin, 1989)

  28. B. Ermentrout, Simulating Analyzing and Animating Dynamical Systems (SIAM, Pennsylvania, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anam Azam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aqeel, M., Masood, H., Azam, A. et al. Complex dynamics in a modified disc dynamo: A nonlinear approach. Eur. Phys. J. Plus 132, 282 (2017). https://doi.org/10.1140/epjp/i2017-11552-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11552-3

Navigation