Skip to main content
Log in

Analytical and numerical study of Hopf bifurcation scenario for a three-dimensional chaotic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, Hopf bifurcation is characterized for newly proposed Bhalekar–Gejji three-dimensional chaotic dynamical system. By analytical method, a sufficient condition is established for the existence of Hopf bifurcation. Using numerical continuation technique, Hopf bifurcation diagram is analyzed for chaotic parameter which strengthens our analytical results. Moreover, influence of system parameters on dynamical behavior is investigated using phase portraits, Lyapunov exponents, Lyapunov dimensions and Poincaré maps. Theoretical analysis and numerical simulations demonstrate the rich dynamics of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, F., Jin, Y.L.: Hopf bifurcation analysis and numerical simulation in a 4-hyperchaotic system. Nonlinear Dyn. 67, 2857–2864 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Li, H.W., Wang, M.: Hopf bifurcation analysis in a Lorenz-type system. Nonlinear Dyn. 71, 235–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yu, Y.G., Zhang, S.C.: Hopf bifurcation analysis of the Lu system. Chaos Solitons Fractals 21, 1215–1220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhou, X.B., Wu, Y., Li, Y., Wei, Z.X.: Hopf bifurcation analysis of Liu system. Chaos Solitons Fractals 36, 1385–1391 (2008)

    Article  MATH  Google Scholar 

  5. Sun, M., Tian, L.X., Yin, J.: Hopf bifurcation analysis of the energy resource chaotic system. Int. J. Nonlinear Sci. 1, 49–53 (2006)

    MathSciNet  Google Scholar 

  6. Wang, X.: Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system. Chaos Solitons Fractals 42, 2208–2217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhuang, K.J.: Hopf bifurcation analysis for a novel hyperchaotic system. J. Comput. Nonlinear Dyn. 8(1), 014501 (2012)

    Article  Google Scholar 

  8. Yan, Z.Y.: Hopf bifurcation in the Lorenz-type chaotic system. Chaos Solitons Fractals 31(5), 1135–1142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kuznetsov, Y.A.: Element of Applied Bifurcation Theory. Springer, New York (1998)

    MATH  Google Scholar 

  10. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical System. Springer, New York (2000)

    MATH  Google Scholar 

  11. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Application to Physics, Biology, Chemistry, and Engineering. Westview, Cambridge (2000)

    Google Scholar 

  12. Marsden, J.E., McCracken, M.: The Hopf Bifurcation and Its Application. Springer, New York (1976)

    Book  MATH  Google Scholar 

  13. Guckenheimer, J., Myers, M., Sturmfels, B.: Computing Hopf bifurcation I. SIAM J. Numer. Anal. 34(1), 1–21 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garrat, T.J., Moore, G., Spence, A.: Bifurcation & Chaos: Analysis, Algorithms, Application. Birkhäuser Basel, Switzerland (1991)

    Google Scholar 

  15. Gao, Q., Ma, J.H.: Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 58, 209–216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aqeel, M., Yue, B.Z.: Nonlinear analysis of stretch-twist-fold (STF) flow. Nonlinear Dyn. 72, 581–590 (2013)

    Article  MathSciNet  Google Scholar 

  17. Itik, M., Banks, S.P.: Chaos in a three-dimensional cancer model. Int. J. Bifurc. Chaos 20, 71–79 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao, Z., Yang, L., Chen, L.: Bifurcation & chaos of biochemical reaction model with impulsive perturbation. Nonlinear Dyn. 63, 521–535 (2010)

    Article  MathSciNet  Google Scholar 

  19. Li, S.J., Alvarez, G., Chen, G.R.: Breaking a chaos-based secure communication scheme designed by an improved modulation method. Chaos Solitons Fractals 25, 109–120 (2005)

    Article  MATH  Google Scholar 

  20. Mittal, A.K., Mukerjee, S., Shukla, R.P.: Bifurcation analysis of some forced Lu systems. Commun. Nonlinear Sci. Numer. Simul. 16, 789–797 (2011)

    MathSciNet  Google Scholar 

  21. Ueta, T., Chen, G.R.: Bifurcation analysis of Chen’s equation. Int. J. Bifurc. Chaos 10, 1917–1931 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Yue, B.Z., Aqeel, M.: Chaotification in the stretch-twist-fold (STF) flow. Chin. Sci. Bull. 58, 1655–1662 (2013)

    Article  Google Scholar 

  23. Bhalekar, S., Daftardar-Gejji, V.: A new chaotic dynamical system and its synchronization. In: Proceedings of the International Conference on Mathematical Sciences in Honor of Prof. A. M. Mathai, 3–5 January 2011, Palai, Kerla-686 574, India

  24. Bhalekar, S.: Forming mechanism of Bhalekar-Gejji chaotic dynamical system. Am. J. Comput. Appl. Math. 2(6), 257–259 (2012)

  25. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems. SIAM, Pennsylvania (2002)

    Book  MATH  Google Scholar 

  26. Parker, T.S., Chua, L.O.: Practical Numerical Algorithm for Chaotic System. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  27. Seydel, R.: Practical Bifurcation and Stability Analysis, from Equilibrium to Chaos. Springer, New York (1994)

    MATH  Google Scholar 

  28. Doedel, E.J., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems (I), bifurcation in finite dimension. Int. J. Bifurc. Chaos 1, 493–520 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Beyn, W.J., Champneys, A., Doedel, E.J., Kuznetov, Y.A., Govaerts, W., Sandstede, B.: Numerical continuation and computation of normal forms. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2, pp. 149–219. Elsevier, Amsterdam (2001)

    Google Scholar 

  30. Friedman, M.J., Doel, E.J.: Numerical computation and continuation of invariant manifolds connecting fixed points. SIAM J. Numer. Anal. 28, 789–808 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, New York (1981)

  32. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    Book  MATH  Google Scholar 

  33. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  34. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  35. Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. Applied Mathematical Sciences series, vol. 51. Springer, Berlin (1984)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to the reviewers for their valuable suggestions and comments to improve the quality of the manuscript. This work is partially supported by Higher Education Commission (HEC), Pakistan under the program “Startup Research Grant” with Grant No. SRGP (PD-IPFP/HRD/ HEC/2014/1659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aqeel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aqeel, M., Ahmad, S. Analytical and numerical study of Hopf bifurcation scenario for a three-dimensional chaotic system. Nonlinear Dyn 84, 755–765 (2016). https://doi.org/10.1007/s11071-015-2525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2525-z

Keywords

Navigation