Skip to main content
Log in

The remarkable history of the discovery of neutrino oscillations

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The experimental observation of neutrino flavour oscillations took place some 30 years after they had been first proposed, and even then came about principally as a result of an anomalously low value in the measurement of the electroweak mixing angle, resulting in the possible validity of the minimal SU(5) grand unification scheme and the prediction of proton decay. In turn this led to underground experiments which failed in their original objective, but were to discover – purely as a background – the oscillatory behaviour of neutrino flavour, due to a fortuitous fourfold coincidence in the values of the neutrino mass differences, the Earth’s radius and magnetic field and the tiny value of the Fermi constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aglietta, M. et al. 1987. Europhys. Lett. 3: 1315.

    Article  ADS  Google Scholar 

  2. Ahmed, Q.R. et al. 2004. Phys. Rev. Lett. 92: 181301.

    Article  ADS  Google Scholar 

  3. Amaldi, U., W. de Boer and H. Furstenau. 1991. Phys. Lett. B 260: 447.

    Article  ADS  Google Scholar 

  4. Ashie, Y. et al. 2004. Phys. Rev. Lett. 93: 101801.

    Article  ADS  Google Scholar 

  5. Backenstoss, G.K. et al. 1960. Nuov. Cim. 16: 749.

    Article  Google Scholar 

  6. Bahcall, J. and R.K. Ulrich. 1988. Rev. Mod. Phys. 60: 297.

    Article  ADS  Google Scholar 

  7. Bahcall, J. and M.H. Pinsonneault. 1992. Rev. Mod. Phys. 64: 885.

    Article  ADS  Google Scholar 

  8. Becker-Szendy, R. et al. 1992. Phys. Rev. Lett. 69: 1010.

    Article  ADS  Google Scholar 

  9. Berger, C. et al. 1990. Phys. Lett. B 245: 305.

    Article  ADS  Google Scholar 

  10. Bionta, R. et al. 1987. Phys. Rev. Lett. 58: 1494.

    Article  ADS  Google Scholar 

  11. Block, M.M. et al. 1964. Phys. Lett. 12: 281.

    Article  ADS  Google Scholar 

  12. Budagov, I. et al. 1969. Phys. Lett. B 30: 364.

    Article  ADS  Google Scholar 

  13. Cherry, M.L. et al. 1981. Phys. Rev. Lett. 47: 1507.

    Article  ADS  Google Scholar 

  14. Danby, G. et al. 1962. Phys. Rev. Lett. 9: 36.

    Article  ADS  Google Scholar 

  15. Davis, R. 1959. Bull. Am. Phys. Soc. (Washington Meeting).

  16. Davis, R. 1964. Phys. Rev. Lett. 12: 303.

    Article  ADS  Google Scholar 

  17. Dimopoulos, S. 1994. Proc. IUPAP Conf. on H.E. Phys., Glasgow.

  18. Fukuda, S. et al. 2001. Phys. Rev. Lett. 86: 5681.

    ADS  Google Scholar 

  19. Fukuda, S. et al. 2003. Nucl. Instrum. Methods A 501: 418.

    Article  ADS  Google Scholar 

  20. Fukuda, Y. et al. 1994. Phys. Lett. B 235: 337.

    Google Scholar 

  21. Fukuda, Y. et al. 1998. Phys. Rev. Lett. 81: 1562.

    Article  ADS  Google Scholar 

  22. Georgi, H. and S.L. Glashow. 1974. Phys. Rev. Lett. 32: 438.

    Article  ADS  Google Scholar 

  23. Gribov, V. and B. Pontecorvo. 1969. Phys. Lett. B 28: 493.

    Article  ADS  Google Scholar 

  24. Gross, D.J. and F. Wilczek. 1973. Phys. Rev. D 8: 3633.

    Article  ADS  Google Scholar 

  25. Hirata, S.K. et al. 1987. Phys. Rev. Lett. 58: 1490.

    Article  ADS  Google Scholar 

  26. Hirata, S.K. et al. 1988. Phys. Rev. D 38: 448.

    Article  ADS  MathSciNet  Google Scholar 

  27. Hirata, S.K. et al. 1992. Phys. Lett. B 280: 146.

    Article  ADS  Google Scholar 

  28. Kafka, T. et al. 1994. Nucl. Phys. B 35: 427. (Proc. Suppl.)

    Article  Google Scholar 

  29. Langacker, P. 1981. Phys. Rep. 72: 186.

    Article  ADS  Google Scholar 

  30. Learned, J., F. Reines and A. Soni. 1979. Phys. Rev. Lett. 43: 907.

    Article  ADS  Google Scholar 

  31. Maki, Z., M. Nakagawa and S. Sakata. 1962. Prog. Theor. Phys. 28: 870.

    Article  ADS  MATH  Google Scholar 

  32. Osborne, J.L., S.S. Said and A.W. Wolfendale. 1965. Proc. Phys. Soc. 86: 93.

    Article  ADS  Google Scholar 

  33. Perkins, D.H. 1984. Ann. Rev. Nucl. Part. Sci. 34: 1.

    Article  ADS  MathSciNet  Google Scholar 

  34. Perkins, D.H. 1994. Astroparticle Physics 2: 249.

    Article  ADS  Google Scholar 

  35. Politzer, H.D. 1974. Phys. Rep. C 14: 129.

    Article  ADS  Google Scholar 

  36. Pontecorvo, B. 1957. J. Exp. Theor. Phys. 33: 549.

    Google Scholar 

  37. Pontecorvo, B. 1958. J. Exp. Theor. Phys. 34: 247.

    Google Scholar 

  38. Pontecorvo, B. 1967. J. Exp. Theor. Phys. 53: 1717.

    Google Scholar 

  39. Prescott, C.Y. et al. 1978. Phys. Lett. B 77: 347.

    Article  ADS  Google Scholar 

  40. Prescott, C.Y. et al. 1979. Phys. Lett. B 84: 524.

    Article  ADS  Google Scholar 

  41. Robertson, H. 1992. Proc. IUPAP meeting on High Energy Physics, Dallas.

  42. Sakharov, A. 1967. JETP Lett. 5: 24.

    ADS  Google Scholar 

  43. Suzuki, A. 2005a. Physica Scripta T 121: 33-38.

    Article  ADS  Google Scholar 

  44. Suzuki, Y. 2005b. Physica Scripta T 121: 23-28.

    Article  ADS  Google Scholar 

  45. Wess, J. and B. Zumino. 1974. Nucl. Phys. B 70: 39.

    Article  ADS  MathSciNet  Google Scholar 

  46. Yamaguchi, Y. 1959. Prog. Theor. Phys. 22: 373.

    Article  ADS  Google Scholar 

  47. Zatsepin, G.T. and V.A. Kuzmin. 1962. JETP 14: 1294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don H. Perkins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perkins, D. The remarkable history of the discovery of neutrino oscillations. EPJ H 39, 505–515 (2014). https://doi.org/10.1140/epjh/e2014-50037-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2014-50037-4

Keywords

Navigation