Skip to main content
Log in

Glass transition in hard-core fluids and beyond, using an effective static structure in the mode coupling theory

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The dynamical arrest in classical fluids is studied using a simple modification of the mode coupling theory (MCT) aimed at correcting its overestimation of the tendency to glass formation while preserving its overall structure. As in previous attempts, the modification is based on the idea of tempering the static pair correlations used as input. It is implemented in this work by computing the static structure at a different state point than the one used to solve the MCT equation for the intermediate scattering function, using the pure hard-sphere glass for calibration. The location of the glass transition predicted from this modification is found to agree with simulations data for a variety of systems --pure fluids and mixtures with either purely repulsive interaction potentials or ones with attractive contributions. Besides improving the predictions in the long-time limit, and so reducing the non-ergodicity domain, the same modification works as well for the time-dependent correlators.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Götze, in Liquids, Freezing and Glass Transition, edited by J.-P. Hansen, D. Levesque, J. Zinn-Justin (North-Holland, Amsterdam, 1991) p. 287

  2. G. Szamel, H. Löwen, Phys. Rev. A 44, 8215 (1991)

    Article  ADS  Google Scholar 

  3. J. Bergenholtz, M. Fuchs, Phys. Rev. E 59, 5706 (1999)

    Article  ADS  Google Scholar 

  4. K. Dawson, G. Foffi, M. Fuchs, W. Götze, F. Sciortino, M. Sperl, P. Tartaglia, Th. Voigtmann, E. Zaccarelli, Phys. Rev. E 63, 011401 (2001)

    Article  ADS  Google Scholar 

  5. K.N. Pham et al., Science 296, 104 (2002)

    Article  ADS  Google Scholar 

  6. H. Tanaka, J. Meunier, D. Bonn, Phys. Rev. E 69, 031404 (2004)

    Article  ADS  Google Scholar 

  7. M.E. Cates, M. Fuchs, K. Kroy, W.C.K. Poon, A.M. Puertas, J. Phys.: Condens. Matter 16, S4861 (2004)

    ADS  Google Scholar 

  8. G. Foffi, C. De Michele, F. Sciortino, P. Tartaglia, Phys. Rev. Lett. 94, 078301 (2005)

    Article  ADS  Google Scholar 

  9. G. Foffi, C. De Michele, F. Sciortino, P. Tartaglia, J. Chem. Phys. 122, 224903 (2005)

    Article  ADS  Google Scholar 

  10. F. Sciortino, Eur. Phys. J. B 64, 505 (2008)

    Article  ADS  Google Scholar 

  11. Ph. Germain, S. Amokrane, Phys. Rev. Lett. 102, 058301 (2009)

    Article  ADS  Google Scholar 

  12. Ph. Germain, S. Amokrane, Phys. Rev. E 81, 011407 (2010)

    Article  ADS  Google Scholar 

  13. K. Zhang, M. Fan, Y. Liu, J. Schroers, M.D. Shattuck, C.S. O'Hern, J. Chem. Phys. 143, 184502 (2015)

    Article  ADS  Google Scholar 

  14. W. Kob, H.C. Andersen, Phys. Rev. Lett. 73, 1376 (1994)

    Article  ADS  Google Scholar 

  15. P.N. Pusey, W. van Megen, Phys. Rev. Lett. 59, 2083 (1987)

    Article  ADS  Google Scholar 

  16. U. Bengtzelius, Phys. Rev. A 33, 3433 (1986)

    Article  ADS  Google Scholar 

  17. M. Nauroth, W. Kob, Phys. Rev. E 55, 657 (1997)

    Article  ADS  Google Scholar 

  18. E. Flenner, G. Szamel, Phys. Rev. E 72, 031508 (2005)

    Article  ADS  Google Scholar 

  19. F. Sciortino, P. Tartaglia, E. Zaccarelli, Phys. Rev. Lett. 91, 268301 (2003)

    Article  ADS  Google Scholar 

  20. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)

    Article  ADS  Google Scholar 

  21. W. Kob, S. Roldan-Vargas, L. Berthier, Phys. Proc. 34, 70 (2012)

    Article  ADS  Google Scholar 

  22. G. Szamel, Prog. Theor. Exp. Phys. 2013, 012J01 (2013)

    Article  Google Scholar 

  23. L. Berthier, G. Tarjus, Phys. Rev. E 82, 031502 (2010)

    Article  ADS  Google Scholar 

  24. L. Berthier, G. Tarjus, Eur. Phys. J. E 34, 96 (2011)

    Article  Google Scholar 

  25. L. Berthier, G. Tarjus, J. Chem. Phys. 134, 214503 (2011)

    Article  ADS  Google Scholar 

  26. M.E. Cates, Ann. Henri Poincaré 4, 647 (2003) cond-mat/0211066

    Article  ADS  MathSciNet  Google Scholar 

  27. Th. Voigtmann, A.M. Puertas, M. Fuchs, Phys. Rev. E 70, 061506 (2004)

    Article  ADS  Google Scholar 

  28. M. Tokuyama, T. Narumi, Phys. Rev. E 84, 022501 (2011)

    ADS  Google Scholar 

  29. G. Szamel, Phys. Rev. Lett. 90, 228301 (2003)

    Article  ADS  Google Scholar 

  30. J. Wu, J. Cao, Phys. Rev. Lett. 95, 078301 (2005)

    Article  ADS  Google Scholar 

  31. LMC Janssen, P. Mayer, D.R. Reichman, Phys. Rev. E 90, 052306 (2014)

    Article  ADS  Google Scholar 

  32. J.-L. Barrat, W. Götze, A. Latz, J. Phys.: Condens. Matter 1, 7163 (1989)

    ADS  Google Scholar 

  33. A. Ayadim, Ph. Germain, S. Amokrane, Phys. Rev. E 84, 061502 (2011)

    Article  ADS  Google Scholar 

  34. G. Foffi, W. Götze, F. Sciortino, P. Tartaglia, Th. Voigtmann, Phys. Rev. E 69, 011505 (2004)

    Article  ADS  Google Scholar 

  35. F. Tchangnwa Nya, A. Ayadim, Ph. Germain, S. Amokrane, J. Phys.: Condens. Matter 24, 325106 (2012)

    Google Scholar 

  36. A. Banchio, J. Bergenholtz, G. Nagele, Phys. Rev. Lett. 82, 1792 (1999)

    Article  ADS  Google Scholar 

  37. S. Amokrane, F. Tchangnwa Nya, M. Ndjaka, arXiv:1207.3938v3 [cond-mat.stat-mech]

  38. G. Nägele, J. Bergenholtz, J.K.G. Dhont, J. Chem. Phys. 110, 7037 (1999)

    Article  ADS  Google Scholar 

  39. M. Benmouna, H. Benoit, M. Duval, Z. Akcasu, Macromolecules 20, 1107 (1987)

    Article  ADS  Google Scholar 

  40. D. Viehman, K. Schweizer, J. Chem. Phys. 128, 084509 (2008)

    Article  ADS  Google Scholar 

  41. M. Fuchs, W. Götze, I. Hofacker, A. Latz, J. Phys.: Condens. Matter 3, 5047 (1991)

    ADS  Google Scholar 

  42. L. Fabbian, R. Schilling, F. Sciortino, P. Tartaglia, C. Theis, Phys. Rev. E 58, 7272 (1988)

    Article  ADS  Google Scholar 

  43. Y. Rosenfeld, J. Chem. Phys. 98, 8126 (1993)

    Article  ADS  Google Scholar 

  44. S. Amokrane, A. Ayadim, J.-G. Malherbe, J. Chem. Phys. 123, 174508 (2005)

    Article  ADS  Google Scholar 

  45. D. Duh, A. Haymet, J. Chem. Phys. 103, 2625 (1995)

    Article  ADS  Google Scholar 

  46. D. Duh, D. Henderson, J. Chem. Phys. 104, 6742 (1996)

    Article  ADS  Google Scholar 

  47. F.J. Rogers, D.A. Young, Phys. Rev. A 30, 999 (1984)

    Article  ADS  Google Scholar 

  48. B. Bernu, J.P. Hansen, Y. Hiwatari, G. Pastore, Phys. Rev. A 36, 4891 (1987)

    Article  ADS  Google Scholar 

  49. R. Ni, M.A. Cohen Stuart, M. Dijkstra, Nat. Commun. 4, 2704 (2013)

    ADS  Google Scholar 

  50. A. Imhof, J.K.G. Dhont, Phys. Rev. Lett. 75, 1662 (1995)

    Article  ADS  Google Scholar 

  51. A. Imhof, J.K.G. Dhont, Phys. Rev. E 52, 6344 (1995)

    Article  ADS  Google Scholar 

  52. F. Sciortino, W. Kob, Phys. Rev. Lett. 86, 648 (2001)

    Article  ADS  Google Scholar 

  53. A.D. Dinsmore, A.G. Yodh, D.J. Pine, Phys. Rev. E. 52, 4045 (1995)

    Article  ADS  Google Scholar 

  54. Ph. Germain, J.G. Malherbe, S. Amokrane, Phys. Rev. E 70, 041409 (2004)

    Article  ADS  Google Scholar 

  55. J.-L. Barrat, A. Latz, J. Phys.: Condens. Matter 2, 4289 (1990)

    ADS  Google Scholar 

  56. R. Di Leonardo, L. Angelani, G. Parisi, G. Ruocco, Phys. Rev. Lett. 84, 6054 (2000)

    Article  ADS  Google Scholar 

  57. M. Robles, M. Lopez de Haro, Europhys. Lett. 62, 56 (2003)

    Article  ADS  Google Scholar 

  58. D. Ben-Amotz, G. Stell, J. Phys. Chem. 108, 6877 (2004)

    Article  Google Scholar 

  59. D.M. Heyes, A.C. Branka, J. Chem. Phys. 122, 234504 (2005)

    Article  ADS  Google Scholar 

  60. D.M. Heyes, A.C. Branka, Phys. Chem. Chem. Phys. 10, 4036 (2008)

    Article  Google Scholar 

  61. Th. Voigtmann, Phys. Rev. Lett. 101, 095701 (2008)

    Article  ADS  Google Scholar 

  62. W. Kob, H.C. Andersen, Phys. Rev. E 51, 4626 (1995)

    Article  ADS  Google Scholar 

  63. C. Mayer, F. Sciortino, C.N. Likos, H. Löwen, P. Tartaglia, E. Zaccarelli, Macromolecules 42, 423 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amokrane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amokrane, S., Tchangnwa Nya, F. & Ndjaka, J.M. Glass transition in hard-core fluids and beyond, using an effective static structure in the mode coupling theory. Eur. Phys. J. E 40, 17 (2017). https://doi.org/10.1140/epje/i2017-11506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11506-8

Keywords

Navigation