Skip to main content
Log in

Segregation in a model system for tapped wet disks in two dimensions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The problem of segregation of mixtures in a column of wet disks subjected to tapping is studied through a simple model that simulates, through a pseudo-dynamics algorithm, the formation of the packing and the successive tapping of it. The particles consist in a binary mixture of disks with two different sizes and the capillary forces are simulated stochastically by a sticking probability between the particles. We have recently shown that arch formation is one of the chief mechanisms determining size segregation in a non-convecting ensemble of dry disks (R.O. Uñac et al., Eur. Phys. J. E 37, 117 (2014)). In the present paper, we focus on the special role that capillary bridges can have on this type of segregation process, besides the proven effect of the presence of arches. We find that humidity between grains can enhance the segregation process in a binary mixture. In particular, for the case of the segregation of an intruder, humidity can promote the rise of the big particle even in cases where the number or the size of the arches would not normally favor the climb.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Brown, J. Inst. Fuel 13, 15 (1939)

    Google Scholar 

  2. J.C. Williams, Powder Technol. 15, 245 (1976)

    Article  ADS  Google Scholar 

  3. S.-S. Hsiau, W.-C. Chen, Adv. Powder Technol. 13, 301 (2002)

    Article  Google Scholar 

  4. M. Pica Ciamarra, M.D. De Vizia, A. Fierro, M. Tarzia, A. Coniglio, M. Nicodemi, Phys. Rev. Lett. 96, 058001 (2006)

    Article  ADS  Google Scholar 

  5. J.G. Benito, R.O. Uñac, A.M. Vidales, I. Ippolito, Physica A 396, 19 (2014)

    Article  ADS  Google Scholar 

  6. P. Meakin, Physica A 163, 733 (1990)

    Article  ADS  Google Scholar 

  7. G.F. Salter, R.J. Farnish, M.S.A. Bradley, A.J. Burnett, Proc. Inst. Mech. Eng. E 3, 197 (2000)

    Article  Google Scholar 

  8. T. Shinbrot, A. Alexander, F.J. Muzzio, Nature 397, 675 (1999)

    Article  ADS  Google Scholar 

  9. M.J. Metzger, B. Remy, B.J. Glasser, Powder Technol. 205, 42 (2011)

    Article  Google Scholar 

  10. S.C. Yang, Powder Technol. 164, 65 (2006)

    Article  Google Scholar 

  11. M. Majid, P. Walzel, Powder Technol. 192, 311 (2009)

    Article  Google Scholar 

  12. H.M. Jaeger, S.R. Nagel, Science 255, 1523 (1992)

    Article  ADS  Google Scholar 

  13. V.N. Dolgunin, A.N. Kudy, A.A. Ukolov, Powder Technol. 96, 211 (1998)

    Article  Google Scholar 

  14. W.R. Ketterhagen, J.S. Curtis, C.R. Wassgren, A. Kong, P.J. Narayan, B.C. Hancock, Chem. Eng. Sci. 62, 6423 (2007)

    Article  Google Scholar 

  15. R.O. Uñac, J.G. Benito, A.M. Vidales, L.A. Pugnaloni, Eur. Phys. J. E 37, 117 (2014)

    Article  Google Scholar 

  16. C.-C. Liao, S.-S Hsiau, T.-H. Tsai, C.-H. Tai, Chem. Eng. Sci. 65, 1109 (2010)

    Article  Google Scholar 

  17. N. Mitarai, F. Nori, Adv. Phys. 55, 1 (2006) and references therein

    Article  ADS  Google Scholar 

  18. S.S. Manna, D.V. Khakhar, Phys. Rev. E 58, R6935 (1998)

    Article  ADS  Google Scholar 

  19. S.S. Manna, H.J. Herrmann, Eur. Phys. J. E 1, 341 (2000)

    Article  Google Scholar 

  20. L.A. Pugnaloni, M.G. Valluzi, L.G. Valluzzi, Phys. Rev. E 73, 051302 (2006)

    Article  ADS  Google Scholar 

  21. R.O. Uñac, A.M. Vidales, L.A. Pugnaloni, Granular Matter 11, 371 (2009)

    Article  MATH  Google Scholar 

  22. R.O. Uñac, A.M. Vidales, Granular Matter 13, 365 (2011)

    Article  Google Scholar 

  23. A. Kudrolli, Rep. Prog. Phys. 67, 209 (2004)

    Article  ADS  Google Scholar 

  24. A. Anand, J.S. Curtis, C.R. Wassgren, B.C. Hancock, W.R. Ketterhagen, Chem. Eng. Sci. 64, 5268 (2009)

    Article  Google Scholar 

  25. S.J. Gregg, K.S.W. Sing, Adsorption, surface area, and porosity, 2nd edition (Academic Press, London, 1982)

  26. S. Herminghaus, Adv. Phys. 54, 221 (2005)

    Article  ADS  Google Scholar 

  27. S.C. Yang, S.-S. Hsiau, Chem. Eng. Sci. 56, 6837 (2001)

    Article  Google Scholar 

  28. R. Arévalo, D. Maza, L.A. Pugnaloni, Phys. Rev. E 74, 021303 (2006)

    Article  ADS  Google Scholar 

  29. J. Duran, J. Rajchenbach, E. Clément, Phys. Rev. Lett. 70, 2431 (1993)

    Article  ADS  Google Scholar 

  30. J. Duran, T. Mazozi, E. Clément, J. Rajchenbach, Phys. Rev. E 50, 5138 (1994)

    Article  ADS  Google Scholar 

  31. L.A. Pugnaloni, G.C. Barker, A. Mehta, Adv. Complex Syst. 4, 289 (2001)

    Article  MATH  Google Scholar 

  32. L.A. Pugnaloni, G.C. Barker, Physica A 337, 428 (2004)

    Article  ADS  Google Scholar 

  33. L.A. Pugnaloni, M. Mizrahi, C.M. Carlevaro, F. Vericat, Phys. Rev. E 78, 051305 (2008)

    Article  ADS  Google Scholar 

  34. A. Rosato, K.J. Strandburg, F. Prinz, R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  35. G.C. Barker, A. Mehta, Europhys. Lett. 29, 61 (1995)

    Article  ADS  Google Scholar 

  36. R. Jullien, P. Meakin, A. Pavlovitch, Europhys. Lett. 22, 523 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Vidales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uñac, R., Oger, L. & Vidales, A. Segregation in a model system for tapped wet disks in two dimensions. Eur. Phys. J. E 38, 124 (2015). https://doi.org/10.1140/epje/i2015-15124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15124-2

Keywords

Navigation