Skip to main content
Log in

Mechanical vibrations of pendant liquid droplets

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A simple optical deflection technique was used to monitor the vibrations of microlitre pendant droplets of deuterium oxide, formamide, and 1,1,2,2-tetrabromoethane. Droplets of different volumes of each liquid were suspended from the end of a microlitre pipette and vibrated using a small puff of nitrogen gas. A laser was passed through the droplets and the scattered light was collected using a photodiode. Vibration of the droplets resulted in the motion of the scattered beam and time-dependent intensity variations were recorded using the photodiode. These time-dependent variations were Fourier transformed and the frequencies and widths of the mechanical droplet resonances were extracted. A simple model of vibrations in pendant/sessile drops was used to relate these parameters to the surface tension, density and viscosity of the liquid droplets. The surface tension values obtained from this method were found to be in good agreement with results obtained using the standard pendant drop technique. Damping of capillary waves on pendant drops was shown to be similar to that observed for deep liquid baths and the kinematic viscosities obtained were in agreement with literature values for all three liquids studied.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Vukasinovic, M.K. Smith, A. Glezer, J. Fluid Mech. 587, 395 (2007).

    Article  ADS  MATH  Google Scholar 

  2. F. Mugele, J.C. Baret, D. Steinhauser, Appl. Phys. Lett. 88, 204106 (2006).

    Article  ADS  Google Scholar 

  3. S. Daniel, S. Sircar, J. Gliem, M.K. Chaudhury, Langmuir 20, 4085 (2004).

    Article  Google Scholar 

  4. S. Daniel, M.K. Chaudhury, P.G. DeGennes, Langmuir 21, 4240 (2005).

    Article  Google Scholar 

  5. A. Shastry, M.J. Case, K.F. Bohringer, Langmuir 22, 6161 (2006).

    Article  Google Scholar 

  6. K.R. Langley, J.S. Sharp, Langmuir 26, 18349 (2010).

    Article  Google Scholar 

  7. E.D. Wilkes, O.A. Basaran, Phys. Fluids 9, 1512 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. W. Meier, G. Greune, A. Meyboom, K.P. Hofmann, Eur. Biophys. J. 29, 113 (2000).

    Article  Google Scholar 

  9. I. Egry, H. Giffard, S. Schneider, Meas. Sci. Technol. 16, 426 (2005).

    Article  ADS  Google Scholar 

  10. R.J.A. Hill, L. Eaves, Phys. Rev. E 81, 056312 (2010).

    Article  ADS  Google Scholar 

  11. G.A. Coquin, J. Acoust. Soc. Am. 36, 1052 (1964).

    Article  ADS  Google Scholar 

  12. J.C. Chrispell, R. Cortez, D.B. Khismatullin, L.J. Fauci, Physica D 240, 1593 (2011).

    Article  ADS  MATH  Google Scholar 

  13. H. Akimoto, K. Nagai, N. Sakurai, J. Appl. Mech. 79, 041002 (2012).

    Article  ADS  Google Scholar 

  14. R.H. Temperton, R.J.A. Hill, J.S. Sharp, Soft Matter 10, 5375 (2014).

    Article  ADS  Google Scholar 

  15. S. Mettu, M.K. Chaudhury, Langmuir 28, 14100 (2012).

    Article  Google Scholar 

  16. R.W.S. Rayleigh, Proc. R. Soc. London 29, 71 (1879).

    Article  Google Scholar 

  17. S. Chandrasekhar, Proc. London Math. Soc. 3, 141 (1959).

    Article  MathSciNet  Google Scholar 

  18. C.L. Shen, W.J. Xie, B. Wei, Phys. Rev. E 81, 046305 (2010).

    Article  ADS  Google Scholar 

  19. J.S. Sharp, Soft Matter 8, 399 (2012).

    Article  ADS  Google Scholar 

  20. O.I. del Rio, A.W. Neumann, J. Colloid Interface Sci. 196, 136 (1997).

    Article  Google Scholar 

  21. M. Strani, F. Sabetta, J. Fluid Mech. 141, 233 (1984).

    Article  ADS  Google Scholar 

  22. R.W. Smithwick III, J.A.M. Boulet, J. Colloid Interface Sci. 130, 588 (1989).

    Article  Google Scholar 

  23. X. Noblin, A. Buguin, F. Brochard-Wyart, Eur. Phys. J. ST 166, 7 (2009).

    Article  Google Scholar 

  24. J.S. Sharp, D.J. Farmer, J. Kelly, Langmuir 27, 9367 (2011).

    Article  Google Scholar 

  25. R.H. Temperton, J.S. Sharp, Langmuir 29, 4737 (2013).

    Article  MATH  Google Scholar 

  26. A.J.B. Milne, B. Defez, M. Cabrerizo-Vilchez, A. Amirfazli, Adv. Colloid Interface Sci. 203, 22 (2014).

    Article  Google Scholar 

  27. R.C. Weast (Editor), Handbook of Chemistry and Physics, 69th ed. (CRC Press, London 1989).

  28. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd ed. (Elsevier, Oxford 1987) p. 93.

  29. A.M. Cases, A.C. Gomez Mrigliano, C.M. Bonatti, H.N. Solimo, J. Chem. Eng. Data 46, 712 (2001).

    Article  Google Scholar 

  30. G.R. Cokelet, F.J. Hollander, J.H. Smith, J. Chem. Eng. Data 14, 470 (1969).

    Article  Google Scholar 

  31. F.J. Millero, R. Dexter, E. Hoff, J. Chem. Eng. Data 16, 85 (1971).

    Article  Google Scholar 

  32. J. Miles, J. Fluid Mech. 222, 197 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  33. S.T. Milner, J. Fluid Mech. 225, 81 (1991).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Sharp.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temperton, R.H., Smith, M.I. & Sharp, J.S. Mechanical vibrations of pendant liquid droplets. Eur. Phys. J. E 38, 79 (2015). https://doi.org/10.1140/epje/i2015-15079-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15079-2

Keywords

Navigation