Skip to main content
Log in

Stochastic mechanical degradation of multi-cracked fiber bundles with elastic and viscous interactions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The mechanics of fiber bundles has been largely investigated in order to understand their complex failure modes. Under a mechanical load, the fibers fail progressively while the load is redistributed among the unbroken fibers. The classical fiber bundle model captures the most important features of this rupture process. On the other hand, the homogenization techniques are able to evaluate the stiffness degradation of bulk solids with a given population of cracks. However, these approaches are inadequate to determine the effective response of a degraded bundle where breaks are induced by non-mechanical actions. Here, we propose a method to analyze the behavior of a fiber bundle, undergoing a random distribution of breaks, by considering the intrinsic response of the fibers and the visco-elastic interactions among them. We obtain analytical solutions for simple configurations, while the most general cases are studied by Monte Carlo simulations. We find that the degradation of the effective bundle stiffness can be described by two scaling regimes: a first exponential regime for a low density of breaks, followed by a power-law regime at increasingly higher break density. For both regimes, we find analytical effective expressions described by specific scaling exponents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Rafelsky, J.A. Theriot, Annu. Rev. Biochem. 73, 209 (2004).

    Article  Google Scholar 

  2. B.L. Smith, T.E. Schaffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, P.K. Hansma, Nature 399, 761 (1999).

    Article  ADS  Google Scholar 

  3. P. Fratzl, Curr. Opin. Colloid Interface Sci. 8, 32 (2003).

    Article  Google Scholar 

  4. A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Nature 423, 703 (2003).

    Article  ADS  Google Scholar 

  5. T. Giesa, M. Arslan, N.M. Pugno, M.J. Buehler, Nanoletters 11, 5038 (2011).

    Article  ADS  Google Scholar 

  6. M. Buehler, Nano Today 5, 379 (2010).

    Article  Google Scholar 

  7. Y. Liu, S. Thomopoulos, C. Chen, V. Birman, M.J. Buehler, G.M. Genin, J. R. Soc. Interface 11, 20130835 (2014).

    Article  Google Scholar 

  8. N.M. Pugno, F. Bosia, T. Abdalrahman, Phys. Rev. E 85, 011903 (2012).

    Article  ADS  Google Scholar 

  9. G.M. Grason, Phys. Rev. Lett. 105, 045502 (2010).

    Article  ADS  Google Scholar 

  10. N.S. Gov, Phys. Rev. E 78, 011916 (2008).

    Article  ADS  Google Scholar 

  11. S.W. Cranford, J. R. Soc. Interface 10, 20130148 (2013).

    Article  Google Scholar 

  12. H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Science 296, 884 (2002).

    Article  ADS  Google Scholar 

  13. D. Wang, P. Song, C. Liu, W. Wu, S. Fan, Nanotechnology 19, 075609 (2008).

    Article  ADS  Google Scholar 

  14. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 19, 1362 (2004).

    Article  ADS  Google Scholar 

  15. L. Liu, W. Ma, Z. Zhang, Small 7, 1504 (2011).

    Article  Google Scholar 

  16. S. Kumar, T.D. Dang, F.E. Arnold, A.R. Bhattacharyya, B.G. Min, X. Zhang, R.A. Vaia, C. Park, W.W. Adams, R.H. Hauge, R.E. Smalley, S. Ramesh, P.A. Willis, Macromolecules 35, 9039 (2002).

    Article  ADS  Google Scholar 

  17. N.M. Pugno, F. Bosia, A. Carpinteri, Small 4, 1044 (2008).

    Article  Google Scholar 

  18. S. Pradhan, A. Hansen, B.K. Chakrabarti, Rev. Mod. Phys. 82, 499 (2010).

    Article  ADS  Google Scholar 

  19. H. Kawamura, T. Hatano, N. Kato, S. Biswas, B.K. Chakrabarti, Rev. Mod. Phys. 84, 839 (2012).

    Article  ADS  Google Scholar 

  20. F.T. Peirce, J. Text. Ind. 17, T355 (1926).

    Article  Google Scholar 

  21. H.E. Daniels, Proc. R. Soc. London, Ser. A 183, 405 (1945).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. D.G. Harlow, S.L. Phoenix, J. Compos. Mater. 12, 195 (1978).

    Article  ADS  Google Scholar 

  23. D.G. Harlow, S.L. Phoenix, J. Mech. Phys. Solids 39, 173 (1991).

    Article  ADS  MATH  Google Scholar 

  24. D. Sornette, J. Phys. A 22, L243 (1989).

    Article  ADS  Google Scholar 

  25. P.M. Duxbury, P.L. Leath, Phys. Rev. B 49, 12676 (1994).

    Article  ADS  Google Scholar 

  26. S. Zapperi, P. Ray, H.E. Stanley, A. Vespignani, Phys. Rev. Lett. 78, 1408 (1997).

    Article  ADS  Google Scholar 

  27. M. Kloster, A. Hansen, P.C. Hemmer, Phys. Rev. E 56, 2615 (1997).

    Article  ADS  Google Scholar 

  28. P. Bhattacharyya, S. Pradhan, B.K. Chakrabarti, Phys. Rev. E 67, 046122 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  29. J.B. Gómez, D. Iñiguez, A.F. Pacheco, Phys. Rev. Lett. 71, 380 (1993).

    Article  ADS  Google Scholar 

  30. A. Hansen, P.C. Hammer, Phys. Lett. A 184, 394 (1994).

    Article  ADS  Google Scholar 

  31. R.C. Hidalgo, F. Kun, H.J. Herrmann, Phys. Rev. E 65, 032502 (2002).

    Article  ADS  Google Scholar 

  32. D.C. Lagoudas, C.Y. Hui, S.L. Phoenix, Int. J. Solids Struct. 25, 45 (1989).

    Article  MATH  Google Scholar 

  33. D.D. Mason, C.Y. Hui, S.L. Phoenix, Int. J. Solids Struct. 29, 2829 (1992).

    Article  Google Scholar 

  34. I.J. Beyerlein, S.L. Phoenix, R. Raj, Int. J. Solids Struct. 35, 3177 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  35. I.J. Beyerlein, S.L. Phoenix, J. Mech. Phys. Solids 44, 1997 (1996).

    Article  ADS  Google Scholar 

  36. F. Raischel, F. Kun, H.J. Herrmann, Phys. Rev. E 73, 066101 (2006).

    Article  ADS  Google Scholar 

  37. R.C. Hidalgo, F. Kun, H.J. Herrmann, Phys. Rev. E 64, 066122 (2001).

    Article  ADS  Google Scholar 

  38. R.C. Hidalgo, F. Kun, K. Kovcs, I. Pagonabarraga, Phys. Rev. E 80, 051108 (2009).

    Article  ADS  Google Scholar 

  39. F. Kun, S. Nagy, Phys. Rev. E 77, 016608 (2008).

    Article  ADS  Google Scholar 

  40. U. Divakaran, A. Dutta, Phys. Rev. E 78, 021118 (2008).

    Article  ADS  Google Scholar 

  41. C. Roy, S. Kundu, S.S. Manna, Phys. Rev. E 87, 062137 (2013).

    Article  ADS  Google Scholar 

  42. K. Kovács, R.C. Hidalgo, I. Pagonabarraga, F. Kun, Phys. Rev. E 87, 042816 (2013).

    Article  ADS  Google Scholar 

  43. K.S. Gjerden, A. Stormo, A. Hansen, Phys. Rev. Lett. 111, 135502 (2013).

    Article  ADS  Google Scholar 

  44. L.J. Walpole, Adv. Appl. Mech. 11, 169 (1981).

    Google Scholar 

  45. Z. Hashin, J. Appl. Mech. 50, 481 (1983).

    Article  ADS  MATH  Google Scholar 

  46. T. Mura, Micromechanics of Defects in Solids (Kluwer Academic Publishers, Dordrecht, 1991).

  47. Z. Hashin, S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).

    Article  ADS  MATH  Google Scholar 

  48. Z. Hashin, S. Shtrikman, J. Mech. Phys. Solids 10, 335 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Torquato, J. Mech. Phys. Solids 45, 1421 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. S. Torquato, J. Mech. Phys. Solids 46, 1411 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. J.G. Berryman, J. Acoust. Soc. Am. 68, 1820 (1980).

    Article  ADS  MATH  Google Scholar 

  52. M. Avellaneda, Commun. Pure Appl. Math. 40, 527 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  53. R. McLaughlin, Int. J. Eng. Sci. 15, 237 (1977).

    Article  MATH  Google Scholar 

  54. S. Giordano, Eur. J. Mech. A. Solids 22, 885 (2003).

    Article  ADS  MATH  Google Scholar 

  55. J.D. Eshelby, Proc. R. Soc. A 241, 376 (1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. M. Kachanov, Appl. Mech. Rev. 45, 305 (1992).

    Article  ADS  Google Scholar 

  57. M. Kachanov, Adv. Appl. Mech. 30, 259 (1994).

    Google Scholar 

  58. S. Giordano, L. Colombo, Phys. Rev. Lett. 98, 055503 (2007).

    Article  ADS  Google Scholar 

  59. S. Giordano, L. Colombo, Phys. Rev. B 77, 054106 (2008).

    Article  ADS  Google Scholar 

  60. S. Giordano, P.L. Palla, Eur. Phys. J. B 85, 59 (2012).

    Article  ADS  Google Scholar 

  61. S. Giordano, A. Mattoni, L. Colombo, Rev. Comput. Chem. 27, 1 (2011).

    Google Scholar 

  62. Y. Kashida, M. Kato, Antimicrob. Agents Chemother. 41, 2389 (1997).

    Google Scholar 

  63. P. Cao, J.-i. Hanai, P. Tanksale, S. Imamura, V.P. Sukhatme, S.H. Lecker, FASEB J. 23, 2844 (2009).

    Article  Google Scholar 

  64. J.F. Ward, Int. J. Radiat. Biol. 57, 1141 (1990).

    Article  Google Scholar 

  65. G. Perret, P.-T. Chiang, T. Lacornerie, M. Kumemura, N. Lafitte, H. Guillou, L. Jalabert, E. Lartigau, T. Fujii, F. Cleri, H. Fujita, D. Collard, in Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference, Osaka, 2013 (IEEE, New York, 2013) p. 6820.

  66. F. Manca, S. Giordano, P.L. Palla, G. Perret, E. Lartigau, D. Collard, H. Fujita, F. Cleri, European Materials Research Society Spring Meeting, E-MRS Spring 2014, Lille, Symposium N - Converging technology for nanobio-applications.

  67. M. Kumemura, D. Collard, S. Yoshizawa, D. Fourmy, N. Lafitte, S. Takeuchi, T. Fujii, L. Jalabert, H. Fujita, in International Conference on Micro Electro Mechanical Systems (MEMS2010), Hong Kong (IEEE, New York, 2010) p. 915.

  68. M. Kumemura, D. Collard, R. Tourvielle, N. Lafitte, K. Montagne, S. Yoshizawa, D. Fourmy, C. Yamahata, L. Jalabert, Y. Sakai, S. Takeuchi, T. Fujii, H. Fujita, in International Conference on Micro Electro Mechanical Systems (MEMS2011), Cancún (IEEE, New York, 2011) p. 67.

  69. E.S. Ibrahim, Electric Power Syst. Res. 52, 9 (1999).

    Article  Google Scholar 

  70. R. Betti, A. West, G. Vermaas, Y. Cao, J. Bridge Eng. 10, 151 (2005).

    Article  Google Scholar 

  71. J.P. Broomfield, Corrosion of Steel in Concrete (Taylor & Francis, New York, 2007).

  72. D. Cohen, P. Lehmann, D. Or, Water Resour. Res. 45, W10436 (2009).

    Article  ADS  Google Scholar 

  73. Y. Matsushi, Y. Matsukura, Bull. Eng. Geol. Env. 65, 449 (2006).

    Article  Google Scholar 

  74. F. Manca, S. Giordano, P.L. Palla, F. Cleri, Phys. Rev. Lett. 113, 255501 (2014).

    Article  ADS  Google Scholar 

  75. F. Cleri, Sci. Model. Simul. 15, 369 (2008).

    Article  Google Scholar 

  76. F. Manca, S. Giordano, P.L. Palla, R. Zucca, F. Cleri, L. Colombo, J. Chem. Phys. 136, 154906 (2012).

    Article  ADS  Google Scholar 

  77. F. Manca, S. Giordano, P.L. Palla, F. Cleri, L. Colombo, J. Chem. Phys. 137, 244907 (2012).

    Article  ADS  Google Scholar 

  78. F. Manca, S. Giordano, P.L. Palla, F. Cleri, L. Colombo, Phys. Rev. E 87, 032705 (2013).

    Article  ADS  Google Scholar 

  79. F. Manca, S. Giordano, P.L. Palla, F. Cleri, Physica A 395, 154 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  80. D. Collard, Private communications (2014).

  81. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publication, New York, 1970).

  82. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (National Institute of Standards and Technology and Cambridge University Press, New York, 2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Giordano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manca, F., Giordano, S., Palla, P.L. et al. Stochastic mechanical degradation of multi-cracked fiber bundles with elastic and viscous interactions. Eur. Phys. J. E 38, 44 (2015). https://doi.org/10.1140/epje/i2015-15044-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15044-1

Keywords

Navigation