Skip to main content
Log in

Free surface flow between two horizontal concentric cylinders

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Results are reported on a combined experimental and numerical investigation of a free surface flow at small Reynolds numbers. The flow is driven by the rotation of the inner of two horizontal concentric cylinders, with an inner to outer radius ratio of 0.43. The outer cylinder is stationary. The annular gap is partially filled, from 0.5 to 0.95 full, with a viscous liquid leaving a free surface. When the fraction of the annular volume filled by liquid is 0.5, a thin liquid film covers the rotating inner cylinder and reenters the liquid pool. For relatively low rotation speeds, the evolution of the film thickness is consistent with the theory for a plate being withdrawn from an infinite liquid pool. The overall liquid flow pattern at this condition consists of two counter-rotating cells: one is around the inner cylinder and the other with weaker circulation rate is in the bottom part of the annulus and nearly symmetric about the vertical axis. With increasing rotation rate, the free surface becomes more deformed, and the dynamics of the stagnation line and the cusp line dividing the cells are tracked as quantitative measures of the interface shape. In addition, the recirculating flow cells lose symmetry and the cusp deforms the free surface severely. A comparison of numerically computed flow which describes the interface by a phase-field method confirms the dynamics of the two cells and the interface deformation. For filling fraction 0.75, the liquid level is slightly above the inner cylinder and a significant decrease in size of the bottom cell with increasing rotation rate is found. For filling fractions approaching unity, the liquid flow consists of one single cell and the surface deformation remains small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.T. Balmer, Nature 227, 600 (1970)

    Article  ADS  Google Scholar 

  2. S.T. Thoroddsen, L. Mahadevan, Exp. Fluids 23, 1 (1997)

    Article  Google Scholar 

  3. F. Melo, S. Douady, Phys. Rev. Lett. 71, 3283 (1993)

    Article  ADS  Google Scholar 

  4. M.C.T. Wilson, P.H. Gaskell, M.D. Savage, Phys. Fluids 17, 093601 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Brøns, Adv. Appl. Mech. 41, 1 (2007)

    Article  Google Scholar 

  6. P.H. Gaskell, M.D. Savage, M. Wilson, J. Fluid Mech. 337, 263 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. D.D. Joseph, J. Nelson, J. Renardy, Y. Renardy, J. Fluid Mech. 223, 383 (1991)

    Article  ADS  Google Scholar 

  8. J.-T. Jeong, H.K. Moffatt, J. Fluid Mech. 241, 1 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Y.C. Severtson, C.K. Aidun, J. Fluid Mech. 312, 173 (1996)

    Article  ADS  Google Scholar 

  10. K.T. Kiger, J.H. Duncan, Annu. Rev. Fluid Mech. 44, 563 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Tirumkudulu, A. Tripathi, A. Acrivos, Phys. Fluids 11, 507 (1999)

    Article  ADS  MATH  Google Scholar 

  12. M.J. Karweit, S. Corrsin, Phys. Fluids 18, 111 (1975)

    Article  ADS  Google Scholar 

  13. O.A.M. Boote, P.J. Thomas, Phys. Fluids 11, 2020 (1999)

    Article  ADS  MATH  Google Scholar 

  14. M. Tirumkudulu, A. Mileo, A. Acrivos, Phys. Fluids 12, 1615 (2000)

    Article  ADS  MATH  Google Scholar 

  15. P.J. Thomas, G.D. Riddell, S. Kooner, G.P. King, Phys. Fluids. 13, 2720 (2001)

    Article  ADS  Google Scholar 

  16. E. Guyez, P.J. Thomas, Phys. Fluids. 21, 033301 (2009)

    Article  ADS  Google Scholar 

  17. B.D. Timberlake, J.F. Morris, Philos. Trans. R. Soc. A 361, 895 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. B. Jin, A. Acrivos, Phys. Fluids 16, 641 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Tirumkudulu, A. Acrivos, Phys. Fluids 13, 14 (2000)

    Article  ADS  Google Scholar 

  20. B.D. Timberlake, J.F. Morris, Phys. Fluids 14, 1580 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  21. I. Mutabazi, J.J. Hegseth, C.D. Andereck, J.E. Wesfreid, Phys. Rev. A 38, 4752 (1988)

    Article  ADS  Google Scholar 

  22. P. Yue, J.J. Feng, C. Liu, J. Shen, J. Fluid Mech. 515, 293 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. M.K. Berkenbush, I. Cohen, W.W. Zhang, J. Fluid Mech. 613, 171 (2008)

    MathSciNet  ADS  Google Scholar 

  24. J. Eggers, S. Courrech du Pont, Phys. Rev. E 79, 066311 (2009)

    Article  ADS  Google Scholar 

  25. D. Zhou, J.J. Feng, J. Non-Newtonian Fluid Mech. 165, 839 (2010)

    Article  MATH  Google Scholar 

  26. S.D.R. Wilson, J. Engg. Math. 16, 209 (1982)

    Article  ADS  MATH  Google Scholar 

  27. P.-G. de Gennes, F. Brochard-Wyard, D. Quéré, Gouttes, bulles, perles et ondes (Editions Belin, 2002)

  28. B. Jin, A. Acrivos, A. Munch, Phys. Fluids 17, 103603 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  29. G. Bohme, G. Pokriefke, A. Muller, Arch. Appl. Mech. 75, 619 (2006)

    Article  ADS  Google Scholar 

  30. E. Lorenceau, F. Restagno, D. Quéré, Phys. Rev. Lett. 90, 184501 (2003)

    Article  ADS  Google Scholar 

  31. J. Eggers, Phys. Rev. Lett. 86, 4290 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Peixinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peixinho, J., Mirbod, P. & Morris, J.F. Free surface flow between two horizontal concentric cylinders. Eur. Phys. J. E 35, 19 (2012). https://doi.org/10.1140/epje/i2012-12019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12019-8

Keywords

Navigation