Skip to main content
Log in

Free energy of colloidal particles at the surface of sessile drops

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The influence of finite system size on the free energy of a spherical particle floating at the surface of a sessile droplet is studied both analytically and numerically. In the special case that the contact angle at the substrate equals \( \pi\)/2 , a capillary analogue of the method of images is applied in order to calculate small deformations of the droplet shape if an external force is applied to the particle. The type of boundary conditions for the droplet shape at the substrate determines the sign of the capillary monopole associated with the image particle. Therefore, the free energy of the particle, which is proportional to the interaction energy of the original particle with its image, can be of either sign, too. The analytic solutions, given by the Green's function of the capillary equation, are constructed such that the condition of the forces acting on the droplet being balanced and of the volume constraint are fulfilled. Besides the known phenomena of attraction of a particle to a free contact line and repulsion from a pinned one, we observe a local free-energy minimum for the particle being located at the drop apex or at an intermediate angle, respectively. This peculiarity can be traced back to a non-monotonic behavior of the Green's function, which reflects the interplay between the deformations of the droplet shape and the volume constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pieranski, Phys. Rev. Lett. 45, 569 (1980)

    Article  ADS  Google Scholar 

  2. J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973)

    Article  ADS  Google Scholar 

  3. K. Zahn, G. Maret, Phys. Rev. Lett. 85, 3656 (2000)

    Article  ADS  Google Scholar 

  4. R. Bubeck, C. Bechinger, S. Neser, P. Leiderer, Phys. Rev. Lett. 82, 3364 (1999)

    Article  ADS  Google Scholar 

  5. N. Bowden, A. Terfort, J. Carbeck, G.M. Whitesides, Science 276, 233 (1997)

    Article  Google Scholar 

  6. L.E. Helseth, R.M. Muruganathan, Y. Zhang, T.M. Fischer, Langmuir 21, 7271 (2005)

    Article  Google Scholar 

  7. J. Aizenberg, P.V. Braun, P. Wiltzius, Phys. Rev. Lett. 84, 2997 (2000)

    Article  ADS  Google Scholar 

  8. J.C. Loudet, B. Pouligny, EPL 85, 28003 (2009)

    Article  ADS  Google Scholar 

  9. S.U. Pickering, J. Chem. Soc. 91, 2001 (1907)

    Google Scholar 

  10. A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz, Science 298, 1006 (2002)

    Article  ADS  Google Scholar 

  11. M. Chavez-Paez, P. Gonzalez-Mozuelos, M. Medina-Noyola, J.M. Mendez-Alcaraz, J. Chem. Phys. 119, 7461 (2003)

    Article  ADS  Google Scholar 

  12. P.X. Viveros-Mendez, J.M. Mendez-Alcaraz, P. Gonzalez-Mozuelosa, J. Chem. Phys. 128, 014701 (2008)

    Article  ADS  Google Scholar 

  13. A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Science 299, 1716 (2003)

    Article  ADS  Google Scholar 

  14. J. Ruiz-Garcia, R. Gamez-Corrales, B.I. Ivlev, Phys. Rev. E 58, 660 (1998)

    Article  ADS  Google Scholar 

  15. F. Ghezzi, J.C. Earnshaw, J. Phys.: Condens. Matter 9, L517 (1997)

    Article  ADS  Google Scholar 

  16. F. Ghezzi, J.C. Earnshaw, M. Finnis, M. McCluney, J. Colloid Interface Sci. 238, 433 (2001)

    Article  Google Scholar 

  17. R.P. Sear, S.W. Chung, G. Markovich, W.M. Gelbart, J.R. Heath, Phys. Rev. E 59, R6255 (1999)

    Article  ADS  Google Scholar 

  18. M.G. Nikolaides, A.R. Bausch, M.F. Hsu, A.D. Dinsmore, M.P. Brenner, D.A. Weitz, C. Gay, Nature 420, 299 (2002)

    Article  ADS  Google Scholar 

  19. M.M. Nicolson, Proc. Cambridge Philos. Soc. 45, 288 (1949)

    Article  MATH  Google Scholar 

  20. P.A. Kralchevsky, V.N. Paunov, I.B. Ivanov, K. Nagayama, J. Colloid Interface Sci. 151, 79 (1992)

    Article  Google Scholar 

  21. D. Stamou, C. Duschl, D. Johannsmann, Phys. Rev. E 62, 5263 (2000)

    Article  ADS  Google Scholar 

  22. J.C. Loudet, A.M. Alsayed, J. Zhang, A.G. Yodh, Phys. Rev. Lett. 94, 018301 (2005)

    Article  ADS  Google Scholar 

  23. M. Oettel, A. Domínguez, S. Dietrich, Phys. Rev. E 71, 051401 (2005)

    Article  ADS  Google Scholar 

  24. A. Domínguez, M. Oettel, S. Dietrich, J. Chem. Phys. 127, 204706 (2007)

    Article  ADS  Google Scholar 

  25. H. Lehle, E. Noruzifar, M. Oettel, Eur. Phys. J. E 26, 151 (2008)

    Article  Google Scholar 

  26. M. Megens, J. Aizenberg, Nature 424, 1014 (2003)

    Article  ADS  Google Scholar 

  27. L. Foret, A. Würger, Phys. Rev. Lett. 92, 058302 (2004)

    Article  ADS  Google Scholar 

  28. A. Domínguez, M. Oettel, S. Dietrich, J. Phys.: Condens. Matter 17, S3387 (2005)

    Article  ADS  Google Scholar 

  29. K. Danov, P. Kralchevsky, Adv. Colloid Interface Sci. 154, 91 (2010)

    Article  Google Scholar 

  30. M. Oettel, S. Dietrich, Langmuir 24, 1425 (2008)

    Article  Google Scholar 

  31. A. Domínguez, M. Oettel, S. Dietrich, J. Chem. Phys. 128, 114904 (2008)

    Article  ADS  Google Scholar 

  32. H. Diamant, J. Phys. Soc. Jpn. 78, 041002 (2009)

    Article  ADS  Google Scholar 

  33. B.X. Cui, H. Diamant, B.H. Lin, Phys. Rev. Lett. 89, 188302 (2002)

    Article  ADS  Google Scholar 

  34. A. Würger, EPL 75, 978 (2006)

    Article  ADS  Google Scholar 

  35. A. Würger, Phys. Rev. E 74, 041402 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Domínguez, M. Oettel, S. Dietrich, EPL 77, 68002 (2007)

    Article  ADS  Google Scholar 

  37. P.A. Kralchevsky, V.N. Paunov, K. Nagayama, J. Fluid Mech. 299, 105 (1995)

    Article  ADS  MATH  Google Scholar 

  38. P.A. Kralchevsky, K. Nagayama, Particles at Fluid Interfaces (Elsevier, Amsterdam, 2001)

  39. A. Sangani, C. Lu, K. Su, J. Schwarz, Phys. Rev. E 80, 011603 (2009)

    Article  ADS  Google Scholar 

  40. L. Schimmele, M. Napiorkowski, S. Dietrich, J. Chem. Phys. 127, 164715 (2007)

    Article  ADS  Google Scholar 

  41. A. Domínguez, in Structure and Functional Properties of Colloidal Systems, edited by R. Hidalgo-Àlvarez (CRC Press, Boca Raton, 2010), pp. 31--59

  42. Interfacial gradients are of $O(1)$ only on the scale of $a$, which can be inferred from the following qualitative reasoning. For small deformations $u$ of a flat interface one has $\nabla_{\parallel} u \approx f/(2\pi\gamma r)$, where $r$ is the distance from the particle. Due to the stability condition $|f| \lesssim \gamma a$ (eq. (f_small2)), one has $|\nabla_{\parallel} u|\sim 1$ only for $r\sim a$. Nevertheless, one can still apply the linear theory by introducing the notion of an effective colloidal particle which encompasses the whole region with strong interfacial gradients. From the above reasoning it follows that the size of this effective particle is of the order of $a$. Therefore the free energy corresponding to this region is $\sim a^2$, i.e., it contributes only to the subleading term compared to the leading one $\sim f^2\ln(R_0/a)$ (for which we assume $f\sim a$)

  43. J. Guzowski, PhD thesis, unpublished

  44. R. Rosso, E.G. Virga, Phys. Rev. E 68, 012601 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  45. M. Brinkmann, J. Kierfeld, R. Lipowsky, J. Phys. A: Math. Gen. 37, 11547 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. J.D. Jackson, Classical Electrodynamics, 2nd edition (Wiley, New York, 1975)

  47. D.C. Morse, T.A. Witten, Europhys. Lett. 22, 549 (1993)

    Article  ADS  Google Scholar 

  48. K. Brakke, Exp. Math. 1, 141 (1992)

    MathSciNet  MATH  Google Scholar 

  49. L.A. Segel, Mathematics Applied to Continuum Mechanics (Dover, New York, 1987)

  50. In calculating $\delta F$ we have ignored the correction $\delta x$, which also depends on $\alpha$ (see eq. (xcmu)), but gives a contribution of the order $(f^2/\gamma)\times O((a/R_0)^3)$

  51. V. Blickle, J. Mehl, C. Bechinger, Phys. Rev. E 79, 060104 (2009)

    Article  ADS  Google Scholar 

  52. I.I. Smalyukh, S. Chernyshuk, B.I. Lev, A.B. Nych, U. Ognysta, V.G. Nazarenko, O.D. Lavrentovich, Phys. Rev. Lett. 93, 117801 (2004)

    Article  ADS  Google Scholar 

  53. M. Oettel, A. Domínguez, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 28, 99 (2009)

    Article  Google Scholar 

  54. D. Langbein, Capillary Surfaces, 2nd edition (Springer, Berlin, 2002)

  55. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series, Vol. 1, 2nd edition (Gordon and Breach, New York, 1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Guzowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzowski, J., Tasinkevych, M. & Dietrich, S. Free energy of colloidal particles at the surface of sessile drops. Eur. Phys. J. E 33, 219–242 (2010). https://doi.org/10.1140/epje/i2010-10667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10667-2

Keywords

Navigation