Skip to main content
Log in

The influence of external transverse magnetic field in propagation of electrostatic oscillations in single-walled carbon nanotubes

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Propagation of an electrostatic oscillation by using the linearized quantum hydrodynamic model in conjunction with Maxwell’s equations was studied. The dispersion relation of a system of electron plasma in single-walled carbon nanotubes in the presence of an external magnetic field B 0 by considering the exchange-correlation effects in 2D cylindrical geometry is derived here. The uniform static magnetic field is assumed to be normal to the cylindrical surface (Voigt configuration). Distribution of the electrons and ions are considered uniformly over the cylindrical surface of a nanotube. It is found that the external magnetic field has significant impact on the wave in the longer wavelength. The influence of variation in azimuthal index and radius of the nanotube on dispersion relation is also discussed. It is tried to plot some schemes and analyze numerically in different limits of cylindrical and planar geometries. The results can be important in the study of collective phenomena in nanostructures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998)

    Article  ADS  Google Scholar 

  3. A. Nojeh, K. Ioakeimidi, S. Sheikhaei, R.F.W. Pease, J. Appl. Phys. 104, 054308 (2008)

    Article  ADS  Google Scholar 

  4. Y.Y. Chou, G.-Y. Guo, Lei Liu, C.S. Jayanthi, S.Y. Wu, J. Appl. Phys. 96, 2249 (2004)

    Article  ADS  Google Scholar 

  5. I.V. Bondarev, Phys. Rev. B 85, 035448 (2012)

    Article  ADS  Google Scholar 

  6. H.A. Atwater, Sci. Am. 296, 56 (2007)

    Article  Google Scholar 

  7. S.H. Glenzer, R. Redmer, Rev. Mod. Phys. 81, 1625 (2009)

    Article  ADS  Google Scholar 

  8. P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 83, 885 (2011)

    Article  ADS  Google Scholar 

  9. F.F. Chen, Introduction to plasma physics and controlled fusion (Plenum Press, New York, 1984)

  10. W.M. Moslem, I. Zeba, P.K. Shukla, Appl. Phys. Lett. 101, 032106 (2012)

    Article  ADS  Google Scholar 

  11. E. Şenadım Tüzemen, A. Turkoglu, Y. Ergun, I. Sokmen, B. Tanatar, Physica Status Solidi B 244, 635 (2007)

    Article  ADS  Google Scholar 

  12. Y.-T. Ma, S.-H. Mao, J.-K. Xue, Phys. Plasmas 18, 102108 (2011)

    Article  ADS  Google Scholar 

  13. P.A. Andreev, A.Yu. Ivanov, Phys. Plasmas 22, 072101 (2015)

    Article  ADS  Google Scholar 

  14. D. Jackson John, Classical electrodynamics (John Wiley & Sons, Inc., New York, 1999)

  15. F. Haas, G. Manfredi, M. Feix, Phys. Rev. E 62, 2763 (2000)

    Article  ADS  Google Scholar 

  16. H. Ren, Z. Wu, P.K. Chu, Phys. Plasmas 14, 062102 (2007)

    Article  ADS  Google Scholar 

  17. T. Pichler, M. Knupfer, M.S. Golden, J. Fink, A. Rinzler, R.E. Smalley, Phys. Rev. Lett. 80, 4729 (1998)

    Article  ADS  Google Scholar 

  18. M.F. Knupfer, T. Pichler, M.S. Golden, J. Fink, A. Rinzler, R.E. Smalley, Carbon 37, 733 (1999)

    Article  Google Scholar 

  19. M.F. Lin, K.W.-K. Shung, Phys. Rev. B 47, 6617 (1993)

    Article  ADS  Google Scholar 

  20. G. Gumbs, G.R. Aĭzin, Phys. Rev. B 65, 195407 (2002)

    Article  ADS  Google Scholar 

  21. A. Fathalian, S. Nikjo, Solid State Commun. 150, 1062 (2010)

    Article  ADS  Google Scholar 

  22. M.F. Lin, D.S. Chuu, C.S. Huang, Y.K. Lin, K.W.-K. Shung, Phys. Rev. B 53, 15493 (1996)

    Article  ADS  Google Scholar 

  23. L. Wei, Y.-N. Wang, Phys. Rev. B 75, 193407 (2007)

    Article  ADS  Google Scholar 

  24. A.L. Fetter, Ann. Phys. 81, 367 (1973)

    Article  ADS  Google Scholar 

  25. F.L. Shyu, C.P. Chang, R.B. Chen, C.W. Chiu, M.F. Lin, Phys. Rev. B 67, 045405 (2003)

    Article  ADS  Google Scholar 

  26. C.W. Chiu, C.P. Chang, F.L. Shyu, R.B. Chen, M.F. Lin, Phys. Rev. B 67, 165421 (2003)

    Article  ADS  Google Scholar 

  27. C.W. Chiu, F.L. Shyu, C.P. Chang, R.B. Chen, M.F. Lin, Physica E 22, 700 (2004)

    Article  ADS  Google Scholar 

  28. A. Abdikian, M. Bagheri, Phys. Plasmas 20, 102103 (2013)

    Article  ADS  Google Scholar 

  29. M. Bagheri, A. Abdikian, Phys. Plasmas 21, 042506 (2014)

    Article  ADS  Google Scholar 

  30. M. Kobayashi, Phys. Status Solidi B 214, 19 (1999)

    Article  ADS  Google Scholar 

  31. A. Moradi, J. Phys.: Condens. Matter 21, 045303 (2008)

    ADS  Google Scholar 

  32. S.A. Khan, S. Hassan, J. Appl. Phys. 115, 204304 (2014)

    Article  ADS  Google Scholar 

  33. D. Östling, D. Tománek, A. Rosén, Phys. Rev. B 55, 13980 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Abdikian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdikian, A. The influence of external transverse magnetic field in propagation of electrostatic oscillations in single-walled carbon nanotubes. Eur. Phys. J. D 70, 218 (2016). https://doi.org/10.1140/epjd/e2016-70420-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70420-2

Keywords

Navigation