Skip to main content
Log in

Free energy barrier for dissociation of the guanosine monophosphate anion in water

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We report free energy barriers for the ground-state dissociation of the guanosine nucleotide anion in solution, employing implicit and explicit solvation models. The latter was based on the Free Energy Perturbation technique and Monte Carlo simulations. For the lowest-energy structure, both solvation models indicate a solvent-induced transition from a dipole-bound state in the gas phase to a π valence state in solution. The free barrier estimates obtained from explicit and implicit solvation are in fair agreement with each other, although significantly overestimated in comparison to a previously reported explicit solvation model based on ab initio molecular dynamics simulations. Accounting for corrections related to the different DFT functionals used in the present and previous studies significantly improves the agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gohlke, E. Illenberger, Europhys. News 33, 207 (2002)

    Article  ADS  Google Scholar 

  2. L. Sanche, Nature 461, 358 (2009)

    Article  ADS  Google Scholar 

  3. E. Alizadeh, L. Sanche, Chem. Rev. 112, 5578 (2012)

    Article  Google Scholar 

  4. B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)

    Article  ADS  Google Scholar 

  5. C. Winstead, V. McKoy, Radiation Physics and Chemistry 77, 1258 (2008)

    Article  ADS  Google Scholar 

  6. I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)

    Article  ADS  Google Scholar 

  7. C.R. Wang, J. Nguyen, Q.B. Lu, J. Am. Chem. Soc. 131, 11320 (2009)

    Article  Google Scholar 

  8. J. Simons, Acc. Chem. Res. 39, 772 (2006)

    Article  Google Scholar 

  9. J. Gu, J. Leszczynski, H.F. Schaefer III, Chem. Rev. 112, 5603 (2012)

    Article  Google Scholar 

  10. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005)

    Article  Google Scholar 

  11. P. Schyman, A. Laaksonen, J. Am. Chem. Soc. 130, 12254 (2008)

    Article  Google Scholar 

  12. M. Smyth, J. Kohanoff, J. Am. Chem. Soc. 134, 9122 (2012)

    Article  Google Scholar 

  13. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 Revision D.01 (Gaussian Inc. Wallingford CT, 2009)

  14. A.D. Becke, J. Chem. Phys. 98, 1372 (1993)

    Article  ADS  Google Scholar 

  15. N.A. Richardson, S.S. Wesolowski, H.F. Schaefer III, J. Am. Chem. Soc. 124, 10163 (2002)

    Article  Google Scholar 

  16. C. Peng, B.H. Schlegel, Israel J. Chem. 33, 449 (1993)

    Article  Google Scholar 

  17. C. Peng, P.Y. Ayala, H.B. Schlegel, M.J. Frisch, J. Comput. Chem. 17, 49 (1996)

    Article  Google Scholar 

  18. H.B. Schlegel, Wiley Interdisciplin. Rev.: Comput. Mol. Sci. 1, 790 (2011)

    Google Scholar 

  19. Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120, 215 (2008)

    Article  Google Scholar 

  20. A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 113, 6378 (2009)

    Article  Google Scholar 

  21. B. Mennucci, J. Tomasi, J. Chem. Phys. 106, 5151 (1997)

    Article  ADS  Google Scholar 

  22. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)

    Article  Google Scholar 

  23. V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys. 107, 3210 (1997)

    Article  ADS  Google Scholar 

  24. W.L. Jorgensen, J.K. Buckner, S. Boudon, J. Tirado-Rives, J. Chem. Phys. 89, 3742 (1988)

    Article  ADS  Google Scholar 

  25. M.C.P. Lima, K. Coutinho, S. Canuto, W.R. Rocha, J. Phys. Chem. A 110, 7253 (2006)

    Article  Google Scholar 

  26. M.E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford Press, 2010)

  27. A.R. da Cunha, E.L. Duarte, M.T. Lamy, K. Coutinho, Chem. Phys. 440, 69 (2014)

    Article  ADS  Google Scholar 

  28. H.C. Georg, K. Coutinho, S. Canuto, J. Chem. Phys. 126, 034507 (2007)

    Article  ADS  Google Scholar 

  29. S. Canuto, K. Coutinho, D. Trzesniak, Adv. Quantum Chem. 41, 161 (2002)

    Article  ADS  Google Scholar 

  30. H.C. Georg, K. Coutinho, S. Canuto, Chem. Phys. Lett. 429, 119 (2006)

    Article  ADS  Google Scholar 

  31. K. Coutinho, R. Rivelino, H.C. Georg, S. Canuto, in Computational Methods and Applications, edited by S. Canuto (Springer, 2008), p. 159

  32. K. Coutinho, S. Canuto, DICE: A Monte Carlo program for molecular liquid simulations (University of São Paulo, 2003)

  33. M. Allen, D. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, Clarendon Press, 1989)

  34. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)

    Article  Google Scholar 

  35. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)

    Article  Google Scholar 

  36. J. Pranata, S.G. Wierschke, W.L. Jorgensen, J. Am. Chem. Soc. 113, 2810 (1991)

    Article  Google Scholar 

  37. C.M. Breneman, K.B. Wiberg, J. Comput. Chem. 11, 361 (1990)

    Article  Google Scholar 

  38. K. Coutinho, H. Georg, T.L. Fonseca, V. Ludwig, S. Canuto, Chem. Phys. Lett. 437, 148 (2007)

    Article  ADS  Google Scholar 

  39. P.D. Mitev, P.A. Bopp, J. Petreska, K. Coutinho, H. Ågren, L. Pejov, K. Hermansson, J. Chem. Phys. 138, 064503 (2013)

    Article  ADS  Google Scholar 

  40. D.L. Silva, R.C. Barreto, E.G. Lacerda Jr., K. Coutinho, S. Canuto, Spectrochim. Acta A 119, 63 (2014)

    Article  Google Scholar 

  41. M.D. Sevilla, B. Besler, A.O. Colson, J. Phys. Chem. 98, 2215 (1994)

    Article  Google Scholar 

  42. H.Y. Chen, P.Y. Yang, H.F. Chen, C.L. Kao, L.W. Liao, J. Phys. Chem. B 118, 11137 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio T. do N. Varella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornetta, L., Coutinho, K., Canuto, S. et al. Free energy barrier for dissociation of the guanosine monophosphate anion in water. Eur. Phys. J. D 70, 176 (2016). https://doi.org/10.1140/epjd/e2016-70155-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70155-0

Navigation