Skip to main content
Log in

Theoretical photoionization processes for aluminum-like P2+

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The theoretical photoionization cross sections for the ground and metastable states of Al-like P2+ are first time investigated in the photon energy range of 30–43.5 eV by the Dirac R-matrix method, and a good agreement between the dipole length and velocity form is achieved. The effects of the partial photoionization on the total PI of ground and metastable states are discussed. Our theoretical results are consistent with the latest experimental measurement, only some discrepancies are found. The channel coupling effects play an important role in the photoionization of Al-like P2+. The resonance energies and quantum defects are obtained, where a comparison between the theoretical and experimental data is made. It is worth noting that the theoretical resonance is as large as 0.28 eV. Our results can serve as a reference to further study the PI of Al-like P2+ in theory and experiment and be regarded as a supplement for Opacity Project TOP base results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.M. McLaughlin, C.P. Ballance, J. Phys. B 45, 095202 (2011)

    Article  ADS  Google Scholar 

  2. N.C. Sterling, H.L. Dinerstein, T.R. Kallman, J. Suppl. Ser. 169, 37 (2007)

    Article  ADS  Google Scholar 

  3. E. Caffau, P. Bonifacio, R. Faraggiana, M. Steffen, Astron. Astrophys. 532, 98 (2011)

    Article  ADS  Google Scholar 

  4. B.C. Koo, Y.H. Lee, D. S Moon, S.C. Yoon, J.C. Raymond, Science 342, 1346 (2013)

    Article  ADS  Google Scholar 

  5. C.E. Magnusson, P.O. Zetterberg, Phys. Scr. 15, 237 (1977)

    Article  ADS  Google Scholar 

  6. W.C. Martin, R. Zalubas, A. Musgrove, J. Phys. Chem. Ref. Data 14, 751 (1985)

    Article  ADS  Google Scholar 

  7. L. Hernández, A.M. Covington, E.M. Hernández, A. Antillón, A. Morales-Mori, K. Chartkunchand, A. Aguilar, G. Hinojosa, J. Quant. Spectrosc. Radiat. Transfer 159, 80 (2015)

    Article  ADS  Google Scholar 

  8. A.M. Covington, A. Aguilar, I.R. Covington, M.F. Gharaibeh, G. Hinojosa, C.A. Shirley, R.A. Phaneuf, Phys. Rev. A 66, 062710 (2002)

    Article  ADS  Google Scholar 

  9. C. Mendoza, W. Eissner, M. Le Dourneuf, C.J. Zeippen, J. Phys. B 28, 3485 (1995)

    Article  ADS  Google Scholar 

  10. E.T. Kennedy, J.P. Mosnier, P. Van Kampen, D. Cubaynes, S. Guilbaud, C. Blancard, B.M. McLaughlin, J.M. Bizau, Phys. Rev. A 90, 063409 (2014)

    Article  ADS  Google Scholar 

  11. M.C. Witthoeft, J. García, T.R. Kallman, Astrophys. J. Suppl. Ser. 192, 1 (2010)

    Google Scholar 

  12. A. Manuel, P. Romano, A.K. Pradhan, Astrophys. J. Suppl. Ser. 118, 259 (1998)

    Article  ADS  Google Scholar 

  13. E. Trabert, M. Grieser, C. Krantz, R. Repnow, A. Wolf, J.D. Francisco, J. Phys. B 45, 215003 (2012)

    Article  ADS  Google Scholar 

  14. G.P. Gupta, A.Z. Msezane, Indian J. Phys. 88, 11 (2014)

    Article  Google Scholar 

  15. J. Singh, S. Aggarwal, A.K.S. Jha, A.K. Singh, M. Mohan, Can. J. Phys. 89, 1119 (2011)

    Article  ADS  Google Scholar 

  16. C. Mendoza, Atomic Data from the Opacity Project, http://cdsweb.u-strasbg.fr/topbase/xsections.html

  17. P.G. Burke, C.J. Noble, V.M. Burke, Adv. At. Mol. Opt. Phys. 54, 237 (2007)

    Article  ADS  Google Scholar 

  18. K.A. Berrington, W.B. Eissner, P.H. Norrington, Comput. Phys. Commun. 92, 290 (1995)

    Article  ADS  Google Scholar 

  19. J.J. Chang, J. Phys. B 8, 2327 (1975)

    Article  ADS  Google Scholar 

  20. J.J. Chang, J. Phys. B 10, 3195 (1977)

    Article  ADS  Google Scholar 

  21. P.H. Norrington, I.P. Grant, J. Phys. B 14, L261 (1981)

    Article  ADS  Google Scholar 

  22. L. Quigly, K. Berrington, J. Pelan, Comput. Phys. Commun. 114, 225 (1998)

    Article  ADS  Google Scholar 

  23. A. Muller, S. Schippers, R.A. Phaneuf, S.W.J. Scully, A. Aguilar, C. Cisneros, M.F. Gharaibeh, A.S. Schlachter, B.M. McLaughlin, J. Phys. B 47, 135201 (2014)

    Article  ADS  Google Scholar 

  24. I.P. Grant, B.J. McKenzie, P.H. Norrington, D.F. Mayers, N.C. Pyper, Comput. Phys. Commun. 21, 207 (1980)

    Article  ADS  Google Scholar 

  25. Y. Ralchenko, A.E. Kramida, J. Reader (NIST ASD Team), http://physics.Nist.Gov/PhysRefData/ASD/index.html (2008)

  26. E.A. Konovalova, M.G. Kozlov, Phys. Rev. A 92, 042508 (2015)

    Article  ADS  Google Scholar 

  27. M. Domke, K. Schulz, G. Remmers, G. Kaindl, Phys. Rev. A 53, 1424 (1996)

    Article  ADS  Google Scholar 

  28. G.C. King, M. Tronct, H.R. Frank, R.C. Bradford, J. Phys. B 10, 2479 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Jiang, G. & Duan, J. Theoretical photoionization processes for aluminum-like P2+ . Eur. Phys. J. D 70, 122 (2016). https://doi.org/10.1140/epjd/e2016-60731-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60731-7

Keywords

Navigation