Skip to main content
Log in

Ion appearance energies at electron-impact dissociative ionization of sulfur hexafluoride molecule and its fragments

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Theoretical analysis of appearance energies for SF + k (k = 0−n) ion fragments of SF6 molecule as well as F+ and F +2 ions at electron-impact dissociative ionization of SF n (n = 1−6) molecules is presented. Theoretical methods of GAMESS software package were used to calculate the total energies of neutral and charged molecular and atomic fragments. The dissociative ionization process is concluded to occur via repulsive highly-excited electronic states of the SF6 molecule and its fragments, due to which the observed appearance energies exceed the theoretical values. The electron binding energies on the molecular orbitals in the SF6 molecule are compared with the ion fragment appearance energies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data. 29, 267 (2002)

    Article  ADS  Google Scholar 

  2. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)

    Article  Google Scholar 

  3. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  4. R.H. Hertwig, W. Koch, Chem. Phys. Lett. 268, 345 (1997)

    Article  ADS  Google Scholar 

  5. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  6. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  7. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  8. T.H. Dunning Jr., P.J. Hay, in Methods of Electronic Structure Theory, edited by H.F. Schaefer, 3rd edn. (Plenum Press, New York, 1977)

  9. T. Helgaker, Chem. Phys. Lett. 182, 503 (1991)

    Article  ADS  Google Scholar 

  10. A.A. Radtsig, B.M. Smirnov, in Reference Data on Atoms, Molecules, and Ions (Springer-Verlag, Berlin, 1985)

  11. B. de B. Darwent, Bond Dissociation Energies in Simple Molecules, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. 31. (Washington, 1970)

  12. K.K. Irikura, J. Phys. Chem. Ref. Data. 36, 389 (2007)

    Article  ADS  Google Scholar 

  13. E. Miyoshi, Y. Sakai, S. Miyoshi, J. Chem. Phys. 88, 1470 (1988)

    Article  ADS  Google Scholar 

  14. S.G. Lias, J.E. Barmess, J.F. Liebman, J.L. Holmes, R.D. Levin, W.G. Mallard, J. Phys. Chem. Ref. Data. Suppl. 17, 861 (1988)

    Google Scholar 

  15. S.G. Lias, J.F. Liebman, Ion Energetics Data, NIST Chem. WebBook., ed. by P.J. Linstrom, W.G. Mallard. NIST. Gaithersburg MD. 20899 (retrieved January 31. 2014), http://webbook.nist.gov/cgi/cbook.cgi?ID=C10546017&Units=SI&Mask=20#Ion-Energetics

  16. V. Tarnovsky, H. Deutsch, K.I. Martus, K. Becker, J. Chem. Phys. 109, 6596 (1998)

    Article  ADS  Google Scholar 

  17. D.L. Hildenbrand, J. Phys. Chem. 77, 897 (1973)

    Article  Google Scholar 

  18. T. Kiang, R.C. Estler, R.N. Zare, J. Chem. Phys. 70, 5925 (1979)

    Article  ADS  Google Scholar 

  19. L.M. Babcock, G.E. Streit, J. Chem. Phys. 74, 5700 (1981)

    Article  ADS  Google Scholar 

  20. E.R. Fischer, B.L. Kickel, P.B. Armentrout, J. Chem. Phys. 97, 4859 (1992)

    Article  ADS  Google Scholar 

  21. M. Ito, M. Goto, H. Toyoda, H. Sugai, Contrib. Plasma Phys. 35, 405 (1995)

    Article  ADS  Google Scholar 

  22. W. Gombler, A. Haas, H. Willner, Z. Anorg. Allg. Chem. 469, 135 (1980)

    Article  Google Scholar 

  23. A.N. Zavilopulo, O.B. Shpenik, A.V. Snegursky, F.F. Chipev, V.S. Vukstich, Tech. Phys. Lett. 31, 785 (2005)

    Article  Google Scholar 

  24. T. Stanski, B. Adamczyk, Int. J. Mass Spectrom. Ion Phys. 46, 31 (1983)

    Article  ADS  Google Scholar 

  25. D. Margreiter, G. Walder, H. Deutsch, H.U. Poll, C. Winkler, K. Stephan, T.D. Märk, Int. J. Mass Spectrom. Ion Process. 100, 143 (1990)

    Article  ADS  Google Scholar 

  26. R.E. Fox, R.K. Curran, J. Chem. Phys. 34, 1595 (1961)

    Article  ADS  Google Scholar 

  27. K. Mitsuke, S. Suzuki, T. Imamura, I. Koyano, J. Chem. Phys. 93, 8717 (1990)

    Article  ADS  Google Scholar 

  28. J.A. Stone, W. Wytenberg, J. Int. J. Mass Spectrom. Ion Process. 94, 269 (1989)

    Article  ADS  Google Scholar 

  29. M. Tichy, G. Javahery, N.D. Twiddy, E.E. Ferguson, Int. J. Mass Spectrom. Ion Process. 79, 231 (1987)

    Article  ADS  Google Scholar 

  30. R.J. Shul, B.L. Upschulte, R. Passarella, R.G. Keesee, A.W. Castleman, J. Phys. Chem. 91, 2556 (1987)

    Article  Google Scholar 

  31. M. Sasanuma, E. Ishiguro, T. Hayaishi, H. Masuko, Y. Morioka, T. Nakajima, M. Nakamura, J. Phys. B. 12, 4057 (1979)

    Article  ADS  Google Scholar 

  32. B.P. Pullen, J.A.D. Stockdale, Int. J. Mass Spectrom. Ion Phys. 19, 35 (1976)

    Article  ADS  Google Scholar 

  33. I.G. Simm, C.J. Danby, J.H.D. Eland, P.I.J. Mansell, J. Chem. Soc. 426 (1975)

  34. J. Delwiche, Bull. Cl. Sci. Acad. Roy. Belg. 55, 215 (1969)

    Google Scholar 

  35. V.H. Dibeler, J.A. Walker, J. Chem. Phys. 44, 4405 (1966)

    Article  ADS  Google Scholar 

  36. V.H. Dibeler, F.L. Mohler, J. Res. Nat. Bur. Std. 40, 25 (1948)

    Article  Google Scholar 

  37. M.E. Jacox, Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules, NIST Chem. WebBook, ed. by P.J. Linstrom, W.G. Mallard, NIST, Gaithersburg MD, 20899 (retrieved April 14, 2014), http://webbook.nist.gov/cgi/cbook.cgi?ID=C12528368&Units=SI&Mask=800#Electronic-Spec

  38. R.J. Glinski, Chem. Phys. Lett. 129, 342 (1986)

    Article  ADS  Google Scholar 

  39. R.J. Glinski, E.A. Mishalanie, J.W. Birks, J. Photochem. 37, 217 (1987)

    Article  Google Scholar 

  40. R.J. Glinski, C.D. Taylor, Chem. Phys. Lett. 155, 511 (1989)

    Article  ADS  Google Scholar 

  41. R.J. Glinski, C.D. Taylor, F.W. Kutzler, J. Phys. Chem. 94, 6196 (1990)

    Article  Google Scholar 

  42. Q. Li, J. Shu, Q. Zhang, S. Yu, L. Zhang, C. Chen, X. Ma, J. Phys. Chem. 102, 7233 (1998)

    Article  Google Scholar 

  43. Q. Li, Q. Zhang, J. Shu, S. Yu, Q. Song, C. Chen, X. Ma, Chem. Phys. Lett. 305, 79 (1999)

    Article  ADS  Google Scholar 

  44. R.D. III Johnson, J.W. Hudgens, J. Phys. Chem. 94, 3273 (1990)

    Article  Google Scholar 

  45. T.L. Porter, J. Chem. Phys. 48, 2071 (1968)

    Article  ADS  Google Scholar 

  46. A.B. Cornford, D.C. Frost, C.A. McDowell, J.L. Ragle, I.A. Stenhouse, J. Chem. Phys. 54, 2651 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shandor Sh. Demesh.

Additional information

Contribution to the Topical Issue “Elementary Processes with Atoms and Molecules in Isolated and Aggregated States”, edited by Friedrich Aumayr, Bratislav Marinkovic, Stefan Matejcik, John Tanis and Kurt H. Becker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demesh, S.S., Remeta, E.Y. Ion appearance energies at electron-impact dissociative ionization of sulfur hexafluoride molecule and its fragments. Eur. Phys. J. D 69, 168 (2015). https://doi.org/10.1140/epjd/e2015-50636-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50636-4

Keywords

Navigation