Skip to main content
Log in

Multiscale approach to the physics of radiation damage with ions

  • Colloquium
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The multiscale approach to the assessment of biodamage resulting upon irradiation of biological media with ions is reviewed, explained and compared to other approaches. The processes of ion propagation in the medium concurrent with ionization and excitation of molecules, transport of secondary products, dynamics of the medium, and biological damage take place on a number of different temporal, spatial and energy scales. The multiscale approach, a physical phenomenon-based analysis of the scenario that leads to radiation damage, has been designed to consider all relevant effects on a variety of scales and develop an approach to the quantitative assessment of biological damage as a result of irradiation with ions. Presently, physical and chemical effects are included in the scenario while the biological effects such as DNA repair are only mentioned. This paper explains the scenario of radiation damage with ions, overviews its major parts, and applies the multiscale approach to different experimental conditions. On the basis of this experience, the recipe for application of the multiscale approach is formulated. The recipe leads to the calculation of relative biological effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. Surdutovich, A.V. Solov’yov, J. Phys.: Conf. Ser. 373, 012001 (2012)

    ADS  Google Scholar 

  2. I. Baccarelli, F. Gianturco, E. Scifoni, A.V. Solov’yov, E. Surdutovich, Eur. Phys. J. D 60, 1 (2010)

    ADS  Google Scholar 

  3. U. Amaldi, G. Kraft, J. Radiat. Res. 48, A27 (2007)

    Google Scholar 

  4. D. Schardt, T. Elsässer, D. Schulz-Ertner, Rev. Mod. Phys. 82, 383 (2010)

    ADS  Google Scholar 

  5. M. Durante, J. Loeffler, Nat. Rev. Clin. Oncol. 7, 37 (2010)

    Google Scholar 

  6. Particle therapy co-operative group, accessed on 10/2014, http://www.ptcog.ch/index.php/facilities-in-operation

  7. E. Haettner, H. Iwase, D. Schardt, Rad. Protec. Dosim. 122, 485 (2006)

    Google Scholar 

  8. L. Sihver, D. Schardt, T. Kanai, Jpn J. Med. Phys. 18, 1 (1998)

    Google Scholar 

  9. I. Pshenichnov, I. Mishustin, W. Greiner, Nucl. Instrum. Methods B 266, 1094 (2008)

    ADS  Google Scholar 

  10. E. Surdutovich, O. Obolensky, E. Scifoni, I. Pshenichnov, I. Mishustin, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 63 (2009)

    ADS  Google Scholar 

  11. E. Scifoni, E. Surdutovich, A.V. Solov’yov, Phys. Rev. E 81, 021903 (2010)

    ADS  Google Scholar 

  12. A. Chatterjee, W.R. Holley, Adv. Radiat. Biol. 17, 181 (1993)

    Google Scholar 

  13. C. von Sonntag, The Chemical Basis of Radiation Biology (Taylor & Francis, London, 1987)

  14. E. Surdutovich, D.C. Gallagher, A.V. Solov’yov, Phys. Rev. E 84, 051918 (2011)

    ADS  Google Scholar 

  15. L. Sanche, Eur. Phys. J. D 35, 367 (2005)

    ADS  Google Scholar 

  16. B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)

    ADS  Google Scholar 

  17. M.A. Huels, B. Boudaïffa, P. Cloutier, D. Hunting, L. Sanche, JACS 125, 4467 (2003)

    Google Scholar 

  18. L. Sanche, Low-Eenergy Electron Interaction with DNA: Bond Dissociation and Formation of Transient Anions, Radicals, and Radical Anions, in Radical and Radical Ion Reactivity in Nucleic Acid Chemistry, edited by M. Greenberg (J. Wiley & Sons, Inc., New York, 2010), p. 239

  19. E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 66, 206 (2012)

    ADS  Google Scholar 

  20. S. McMahon et al., Sci. Rep. 1, 18 (2011)

    ADS  Google Scholar 

  21. A.V. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Phys. Rev. E 79, 011909 (2009)

    ADS  Google Scholar 

  22. Cost nano-ibct – nanoscale insights into ion beam cancer therapy, accessed on 10/2014, http://www.cost.eu/domains˙actions/mpns/Actions/nano-ibct/

  23. E. Surdutovich, A.V. Solov’yov, Europhys. News 40, 21 (2009)

    ADS  Google Scholar 

  24. E. Surdutovich, E. Scifoni, A.V. Solov’yov, Mutat. Res. 704, 206 (2010)

    Google Scholar 

  25. M. Toulemonde, E. Surdutovich, A.V. Solov’yov, Phys. Rev. E 80, 031913 (2009)

    ADS  Google Scholar 

  26. E. Surdutovich, A. Yakubovich, A.V. Solov’yov, Eur. Phys. J. D 60, 101 (2010)

    ADS  Google Scholar 

  27. E. Surdutovich, A.V. Solov’yov, Phys. Rev. E 82, 051915 (2010)

    ADS  Google Scholar 

  28. E. Surdutovich, A.V. Yakubovich, A.V. Solov’yov, Sci. Rep. 3, 1289 (2013)

    ADS  Google Scholar 

  29. P. de Vera, R. Garcia-Molina, I. Abril, A.V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013)

    ADS  Google Scholar 

  30. M.C. Frese, V.K. Yu, R.D. Stewart, D.J. Carlson, Int. J. Radiat. Oncol. 83, 442 (2012)

    Google Scholar 

  31. V. Semenenko, R. Stewart, Phys. Med. Biol. 51, 1693 (2006)

    Google Scholar 

  32. H. Nikjoo, S. Uehara, D. Emfietzoglou, F.A. Cucinotta, Radiat. Meas. 41, 1052 (2006)

    Google Scholar 

  33. H. Nikjoo, C. Bolton, R. Watanabe, M. Terrisol, P. O’Neill, D. Goodhead, Radiat. Prot. Dosim. 99, 77 (2002)

    Google Scholar 

  34. W. Friedland, P. Jacob, P. Bernhardt, H. Paretzke, M. Dingfelder, Radiat. Res. 159, 401 (2003)

    Google Scholar 

  35. I. Plante, F. Cucinotta, Radiat. Environ. Biophys. 49, 5 (2010)

    Google Scholar 

  36. E.L. Alpen, Radiation Biophysics (Academic Press, 1998)

  37. E.J. Hall, A.J. Giaccia, Radiobiology for Radiologist (Lippincott Williams & Wilkins, 2012)

  38. S. Pimblott, L. Siebbeles, Nucl. Instrum. Methods B 194, 237 (2002)

    ADS  Google Scholar 

  39. S. Pimblott, J. LaVerne, A. Mozumder, J. Phys. Chem. 100, 8595 (1996)

    Google Scholar 

  40. S. Pimblott, J. LaVerne, Rad. Phys. Chem. 76, 1244 (2007)

    ADS  Google Scholar 

  41. J. Meesungnoen, J.P. Jay-Gerin, A. Filali-Mouhim, S. Mankhetkorn, Radiat. Res. 158, 657 (2002)

    Google Scholar 

  42. E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 66, 245 (2012)

  43. M. Bug, E. Surdutovich, H. Rabus, A.B. Rosenfeld, A.V. Solov’yov, Eur. Phys. J. D 66, 291 (2012)

  44. Y. Park, Z. Li, P. Cloutier, L. Sanche, J. Wagner, Radiat. Res. 175, 240 (2011)

    Google Scholar 

  45. M. Smyth, J. Kohanoff, J. Am. Chem. Soc. 134, 9122 (2012)

    Google Scholar 

  46. D. Becker, A. Adhikary, M. Sevilla, Physicochemical mechanisms of radiation induced DNA damage, in Charged Particle and Photon Interactions with Matter Recent Advances, Applications, and Interfaces (CRC Press, Taylor & Francis, Boca Raton, 2010), Chap. 20

  47. E. Surdutovich, A.V. Solov’yov, J. Phys.: Conf. Ser. 438, 012014 (2013)

  48. H. Bethe, Ann. Phys. 397, 325 (1930)

    Google Scholar 

  49. F. Bloch, Z. Phys. A 81, 363 (1933)

    MATH  Google Scholar 

  50. F. Bloch, Ann. Phys. 408, 285 (1933)

    Google Scholar 

  51. I. Abril, R. Garcia-Molina, C. Denton, I. Kyriakou, D. Emfietzoglou, Radiat. Res. 175, 247 (2011)

    Google Scholar 

  52. O. Obolensky, E. Surdutovich, I. Pshenichnov, I. Mishustin, A.V. Solov’yov, W. Greiner, Nucl. Instrum. Methods B 266, 1623 (2008)

    ADS  Google Scholar 

  53. M.E. Rudd, Y.K. Kim, D.H. Madison, T. Gay, Rev. Mod. Phys. 64, 441 (1992)

    ADS  Google Scholar 

  54. L. Landau, E. Lifshitz, L. Pitaevskii, in Electrodynamics of Continuous Media, 2nd edn. (Butterworth-Heinemann, Burlington, 1984), Vol. 8

  55. J. Lindhard, K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 28, 8 (1954)

    Google Scholar 

  56. Z. Tan, Y. Xia, M. Zhao, X. Liu, F. Li, B. Huang, Y. Ji, Nucl. Instrum. Methods Phys. Res. B 222, 27 (2004)

    ADS  Google Scholar 

  57. M. Altarelli, D. Smith, Phys. Rev. B 9, 1290 (1974)

    ADS  Google Scholar 

  58. R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, in Radiation Damage in Biomolecular Systems, edited by G.G. Gómez-Tejedor, M.C. Fuss (Springer, Dordrecht, 2012), Chap. 15

  59. R.H. Ritchie, A. Howie, Philos. Mag. 36, 436 (1977)

    Google Scholar 

  60. M. Dingfelder, D. Hantke, M. Inokuti, H. Paretzke, Radiat. Phys. Chem. 53, 1 (1999)

    ADS  Google Scholar 

  61. D. Emfietzoglou, Radiat. Phys. Chem. 66, 373 (2003)

    ADS  Google Scholar 

  62. P. Bernhardt, H.G. Paretzke, Int. J. Mass Spectrom. 223-224, 599 (2003)

    ADS  Google Scholar 

  63. A. Peudon, S. Edel, M. Terrisol, Radiat. Prot. Dosim. 122, 128 (2006)

    Google Scholar 

  64. Y.K. Kim et al., Electron-impact ionization cross section for ionization and excitation database (version 3.0), accessed on 10/2014, http://www.nist.gov/pml/data/ionization/index.cfm

  65. D.R. White, R.V. Griffith, I.J. Wilson, Photon, Electron, Proton and Neutron Interaction Data for Body Tissues (International Commission on Radiation Units and Measurements (ICRU 46), Bethesda, 1992)

  66. W.E. Wilson, J.H. Miller, L.H. Toburen, S.T. Manson, J. Chem. Phys. 80, 5631 (1984)

    ADS  Google Scholar 

  67. M. Rudd, T. Goffe, R. DuBois, L. Toburen, Phys. Rev. A 31, 492 (1985)

    ADS  Google Scholar 

  68. M.A. Bolorizadeh, M.E. Rudd, Phys. Rev. A 33, 888 (1986)

    ADS  Google Scholar 

  69. Y. Iriki, Y. Kikuchi, M. Imai, A. Itoh, Phys. Rev. A 84, 052719 (2011)

    ADS  Google Scholar 

  70. J. Simons, Adv. Quantum Chem. 52, 171 (2007)

    ADS  Google Scholar 

  71. H. Bichsel, Rev. Mod. Phys. 60, 663 (1988)

    ADS  Google Scholar 

  72. M. Dingfelder, M. Inokuti, H. Paretzke, Rad. Phys. Chem. 59, 255 (2000)

    ADS  Google Scholar 

  73. R. Garcia-Molina, I. Abril, P. de Vera, I. Kyriakou, D. Emfietzoglou, J. Phys.: Conf. Ser. 373, 012015 (2012)

    ADS  Google Scholar 

  74. W.H. Barkas, in Nuclear Research Emulsions I. Techniques and Theory (Academic Press, New York, London, 1963), Vol. 1

  75. G. Schiwietz, P.L. Grande, Nucl. Instrum. Methods B 175-177, 125 (2001)

    ADS  Google Scholar 

  76. P. Kundrat, Phys. Med. Biol. 52, 6813 (2007)

    Google Scholar 

  77. M. Hollmark, J. Uhrdin, D. Belkic, I. Gudowska, A. Brahme, Phys. Med. Biol. 49, 3247 (2004)

    Google Scholar 

  78. M. Inokuti, Rev. Mod. Phys. 43, 297 (1971)

    ADS  Google Scholar 

  79. H. Schmidt-Böcking et al., Radiat. Phys. Chem. 71, 627 (2004)

    ADS  Google Scholar 

  80. C. Tung, T. Chao, H. Hsieh, W. Chan, Nucl. Instrum. Methods B 262, 231 (2007)

    ADS  Google Scholar 

  81. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

    ADS  MATH  MathSciNet  Google Scholar 

  82. J.J. Butts, R. Katz, Radiat. Res. 30, 855 (1967)

    Google Scholar 

  83. R. Katz, B. Ackerson, M. Homayoonfar, S.C. Sharma, Radiat. Res. 47, 402 (1971)

    Google Scholar 

  84. M. Korcyl, M. Waligórski, Int. J. Radiat. Biol. 85, 1101 (2009)

    Google Scholar 

  85. M. Waligorski, R. Hamm, R. Katz, Nucl. Tracks Radiat. Meas. 11, 309 (1986)

    Google Scholar 

  86. F.A. Cucinotta, R. Katz, J.W. Wilson, Radiat. Environ. Biophys. 37, 259 (1998)

    Google Scholar 

  87. J. Ward, Radiat. Res. 142, 362 (1995)

    Google Scholar 

  88. A. Schipler, G. Iliakis, Nucl. Acid. Res. 41, 7589 (2013)

    Google Scholar 

  89. I.I. Fabrikant, S. Caprasecca, G.A. Gallup, J.D. Gorfinkiel, J. Chem. Phys. 136, 184301 (2012)

    ADS  Google Scholar 

  90. D. Becker, M. Sevilla, The Chemical Consequences of Radiation Damage to DNA, in Advances in Radiation Biology, edited by J. Lett. (Academic Press, 1993), Vol. 17, pp. 121–180

  91. F.A. Gianturco, F. Sebastianelli, R.R. Lucchese, I. Baccarelli, N. Sanna, J. Chem. Phys. 128, 174302 (2008)

    ADS  Google Scholar 

  92. L. Sanche, Nanoscale Dynamics of Radiosensitivity: Role of low energy electrons, in Radiation Damage in Biomolecular Systems, edited by G. Garcia, M.C. Fuss (Springer, 2012)

  93. R. Panajotovic, F. Martin, P. Cloutier, D. Hunting, L. Sanche, Radiat. Res. 165, 452 (2006)

    Google Scholar 

  94. L.S. Cederbaum, J. Zobeley, F. Tarantelli, Phys. Rev. Lett. 79, 4778 (1997)

    ADS  Google Scholar 

  95. M. Mucke, M. Braune, S. Barth, M. Förstel, T. Lischke, V. Ulrich, T. Arion, U. Becker, A. Bradshaw, U. Hergenhahn, Nat. Phys. 6, 143 (2010)

    Google Scholar 

  96. S.S. Bulanov et al., Med. Phys. 35, 1770 (2008)

    Google Scholar 

  97. J. Adamcik, J.H. Jeon, K.J. Karczewski, R. Metzler, G. Dietler, Soft Matter 8, 8651 (2012)

    ADS  Google Scholar 

  98. H.M. Dang, M.J.V. Goethem, E.R.V.D. Graaf, S. Brandenburg, R. Hoekstra, T. Schlathölter, Eur. Phys. J. D 63, 359 (2011)

    ADS  Google Scholar 

  99. M. Sevilla, D. Becker, Y. Razskazovskii, Nucleonika 42, 283 (1997)

    Google Scholar 

  100. M. Niklas, A. Abdollahi, M. Akselrod, J. Debus, O. Jäkel, S. Greilich, Int. J. Radiat. Oncol. 87, 1141 (2013)

    Google Scholar 

  101. R. de Jiang, H. Shen, Y.J. Piao, Roman. J. Morphol. Embryol. 51, 663 (2010)

    Google Scholar 

  102. M. Toulemonde, C. Dufour, A. Meftah, E. Paumier, Nucl. Instrum. Methods B 166-167, 903 (2000)

    ADS  Google Scholar 

  103. M. Toulemonde, C. Trautmann, E. Balanzat, K. Hjort, A. Weidinger, Nucl. Instrum. Methods B 216, 1 (2004)

    ADS  Google Scholar 

  104. M. Skupinski, M. Toulemonde, M. Lindeberg, K. Hjort, Nucl. Instrum. Methods B 240, 681 (2005)

    ADS  Google Scholar 

  105. F. Pawlak, C. Dufour, A. Laurent, E. Paumier, J. Perrière, J.P. Stoquert, M. Toulemonde, Nucl. Instrum. Methods B 151, 140 (1999)

    ADS  Google Scholar 

  106. M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, F. Studer, C. Trautmann, Mat. Fys. Medd. 52, 263 (2006)

    Google Scholar 

  107. H. Dammak, D. Lesueur, A. Dunlop, P. Legrand, J. Morillo, Radiat. Eff. Defect. Sol. 126, 111 (1993)

    ADS  Google Scholar 

  108. H.D. Mieskes, W. Assmann, F. Grüner, H. Kucal, Z.G. Wang, M. Toulemonde, Phys. Rev. B 67, 155414 (2003)

    ADS  Google Scholar 

  109. A. Meftah, M. Djebara, N. Khalfaoui, M. Toulemonde, Nucl. Instrum. Methods B 146, 431 (1998)

    ADS  Google Scholar 

  110. V. Katin, Y. Martinenko, Y. Yavlinskii, Sov. Techn. Phys. Lett. 13, 276 (1987)

    Google Scholar 

  111. M. Toulemonde, W. Assmann, C. Trautmann, F. Grüner, Phys. Rev. Lett. 88, 057602 (2002)

    ADS  Google Scholar 

  112. A. Meftah, F. Brisard, J. Costantini, M. Hage-Ali, J. Stoquert, F. Studer, M. Toulemonde, Phys. Rev. B 48, 920 (1993)

    ADS  Google Scholar 

  113. A.V. Yakubovich, E. Surdutovich, A.V. Solov’yov, AIP Conf. Proc. 1344, 230 (2011)

  114. A.V. Yakubovich, E. Surdutovich, A.V. Solov’yov, Nucl. Instrum. Methods B 279, 135 (2012)

    ADS  Google Scholar 

  115. L. Landau, E. Lifshitz, in Fluid Dynamics, 2nd edn. (Reed-Elsevier, Oxford, 1987), Vol. 6

  116. Y. Zeldovich, Y. Raiser, in Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover Publications, Oxford, New York, 1966), Vol. 1

  117. G. Chernyj, Gas Dynamics (Nauka, Moscow, 1994)

  118. I.A. Solov’yov, A.V. Yakubovich, E. Surdutovich, A.V. Solov’yov, Unpublished (2013)

  119. K. Range, M.J. McGrath, X. Lopez, D.M. York, J. Am. Chem. Soc. 126, 1654 (2004)

    Google Scholar 

  120. J. LaVerne, Radiat. Phys. Chem. 34, 135 (1989)

    ADS  Google Scholar 

  121. B. Jakob, M. Scholz, G. Taucher-Scholz, Radiat. Res. 159, 676 (2003)

    Google Scholar 

  122. F. Tobias, M. Durante, G. Taucher-Scholz, B. Jakob, Mutat. Res. 704, 54 (2010)

    Google Scholar 

  123. W.P. Roos, B. Kaina, Trends Mol. Med. 12, 440 (2006)

    Google Scholar 

  124. J. Ward, Prog. Nucleic Acid. Res. Mol. Biol. 35, 95 (1988)

    Google Scholar 

  125. D.T. Goodhead, Int. J. Radiat. Biol. 65, 7 (1994)

    Google Scholar 

  126. S. Malyarchuk, R. Castore, L. Harrison, DNA Repair 8, 1343 (2009)

    Google Scholar 

  127. S. Malyarchuk, R. Castore, L. Harrison, Nucleic Acids Res. 36, 4872 (2008)

    Google Scholar 

  128. E. Sage, L. Harrison, Mutat. Res. 711, 123 (2011)

    Google Scholar 

  129. A.C. Heuskin, C. Michiels, S. Lucas, Phys. Med. Biol. 58, 6495 (2013)

    Google Scholar 

  130. M. Scholz, A. Kellerer, W. Kraft-Weyrather, G. Kraft, Radiat. Environ. Biophys. 36, 59 (1997)

    Google Scholar 

  131. W.K. Weyrather, S. Ritter, M. Scholz, G. Kraft, Int. J. Rad. Biol. 75, 1357 (1999)

    Google Scholar 

  132. R. Hawkins, Int. J. Radiat. Biol. 69, 739 (1996)

    Google Scholar 

  133. R. Hawkins, Radiat. Res. 172, 761 (2009)

    Google Scholar 

  134. D. Goodhead, J. Thacker, R. Cox, Int. J. Radiat. Biol. 63, 543 (1993)

    Google Scholar 

  135. D. Goodhead, Radiat. Prot. Dosim. 122, 3 (2006)

    Google Scholar 

  136. F. Cucinotta, H. Nikjoo, D. Goodhead, Radiat. Environ. Biophys. 38, 81 (1999)

    Google Scholar 

  137. M. Scholz, G. Kraft, Adv. Space Res. 18, 5 (1996)

    ADS  Google Scholar 

  138. T. Friedrich, U. Scholz, T. Elsässer, M. Durante, M. Scholz, Int. J. Radiat. Biol. 88, 103 (2012)

    Google Scholar 

  139. W. Friedland, P. Kundrát, Mutat. Res. Gen. Tox. En. 756, 213 (2013)

    Google Scholar 

  140. Y. Zheng, D.J. Hunting, P. Ayotte, L. Sanche, Radiat. Res. 169, 19 (2008)

    Google Scholar 

  141. M. Depken, H. Schiessel, Biophys. J. 96, 777 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Solov’yov.

Additional information

Contribution to the Topical Issue “Nano-scale Insights into Ion-beam Cancer Therapy”, edited by Andrey V. Solov’yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surdutovich, E., Solov’yov, A.V. Multiscale approach to the physics of radiation damage with ions. Eur. Phys. J. D 68, 353 (2014). https://doi.org/10.1140/epjd/e2014-50004-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50004-0

Keywords

Navigation