Skip to main content
Log in

Positronium formation from porous silica in backscattering and transmission geometries

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The Aarhus positron beam line is utilised to measure the positronium formation fraction from porous silica thin films created by the Glancing Angle Deposition technique. The highest formation fraction found from these studies in a backscattering geometry is (57.7 ± 1.0)% in good agreement with other measurements. In transmission mode, the maximum positronium output is found to be (12.5 ± 0.5)%. These are the first measurements of positronium formation in transmission of a porous silica thin film, a starting point for future attempts to optimise the positronium formation in transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Karshenboim, Int. J. Mod. Phys. A 19, 3879 (2004)

    Article  ADS  Google Scholar 

  2. S. Marder, V.W. Hughes, C.S. Wu, W. Bennett, Phys. Rev. 103, 1258 (1956)

    Article  ADS  Google Scholar 

  3. K.F. Canter, A.P. Mills Jr., S. Berko, Phys. Rev. Lett. 33, 7 (1974)

    Article  ADS  Google Scholar 

  4. A.P. Mills Jr., Phys. Rev. Lett. 41, 1828 (1978)

    Article  ADS  Google Scholar 

  5. M.H. Holzscheiter, M. Charlton, Rep. Prog. Phys. 62, 1 (1999)

    Article  ADS  Google Scholar 

  6. D.B. Cassidy, T.H. Hisakado, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. Lett. 108, 043401 (2012)

    Article  ADS  Google Scholar 

  7. L.B. Madsen, Nucl. Instrum. Methods B 221, 174 (2004)

    Article  ADS  Google Scholar 

  8. P.M. Platzman, A.P. Mills Jr., Phys. Rev. B 49, 454 (1994)

    Article  ADS  Google Scholar 

  9. R.S. Brusa, A. Dupasquier, in Physics with Many Positrons, Proceedings of the International School of Physics “Enrico Fermi”, Course CLXXIV, edited by R.S. Brusa, A. Dupasquier, A.P. Mills Jr. (IOS Press, Amsterdam and SIF, Bologna, 2010), pp. 245–296

  10. S. Mariazzi, P. Bettotti, R.S. Brusa, Phys. Rev. Lett. 104, 243401 (2010)

    Article  ADS  Google Scholar 

  11. R. Ferragut, A. Calloni, A. Dupasquier, G. Consolati, F. Quasso, M.G. Giammarchi, D. Trezzi, W. Egger, L. Ravelli, M.P. Petkov, S.M. Jones, B. Wang, O.M. Yaghi, B. Jasinska, N. Chiodini, A. Paleari, J. Phys.: Conf. Ser. 225, 012007 (2010)

    ADS  Google Scholar 

  12. D.B. Cassidy, P. Crivelli, T.H. Hisakado, L. Liszkay, V.E. Meligne, P. Perez, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. A 81, 012715 (2010)

    Article  ADS  Google Scholar 

  13. D.B. Cassidy, A.P. Mills Jr., Nature 449, 195 (2007)

    Article  ADS  Google Scholar 

  14. P. Crivelli, U. Gendotti, A. Rubbia, L. Liszkay, P. Perez, C. Corbel, Phys. Rev. A 81, 052703 (2010)

    Article  ADS  Google Scholar 

  15. A.P. Mills Jr., E.D. Shaw, R.J. Chichester, D.M. Zuckerman, Phys. Rev. B 40, 2045 (1989)

    Article  ADS  Google Scholar 

  16. M.R. Poulsen, M. Charlton, J. Chevallier, B.I. Deutch, L.V. Jørgensen, G. Laricchia, J. Phys.: Condens. Matter 3, 2849 (1991)

    ADS  Google Scholar 

  17. P. Balling, D. Fregenal, T. Ichioka, H. Knudsen, H.-P.E. Kristiansen, J. Merrison, U.I. Uggerhøj, Nucl. Instrum. Methods B 221, 200 (2004)

    Article  ADS  Google Scholar 

  18. S. Mariazzi, P. Bettotti, S. Larcheri, L. Toniutti, R.S. Brusa, Phys. Rev. B 81, 235418 (2010)

    Article  ADS  Google Scholar 

  19. K. Robbie, L.J. Friedrich, S.K. Dew, T. Smy, M.J. Brett, J. Vac. Sci. Technol. A 13, 1032 (1995)

    Article  ADS  Google Scholar 

  20. C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, K. Robbie, J. Vac. Sci. Technol. B 23, 2545 (2005)

    Article  Google Scholar 

  21. H. Saito, T. Hyodo, in New Directions in Antimatter Chemistry and Physics, edited by C.M. Surko, F.A. Gianturco (Kluwer, Dordrecht, 2010), pp. 101–114

  22. R.G. Greaves, J. Moxom, in Non-Neutral Plasma Physics V, edited by M. Schauer, T. Mitchell, R. Nebel (American Institute of Physics, 2003), pp. 140–148

  23. A.P. Mills Jr., E.M. Gullikson, Appl. Phys. Lett. 49, 1121 (1986)

    Article  ADS  Google Scholar 

  24. R. Khatri, M. Charlton, P. Sferlazzo, K.G. Lynn, A.P. Mills Jr., L.O. Roellig, Appl. Phys. Lett. 57, 2374 (1990)

    Article  ADS  Google Scholar 

  25. P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988)

    Article  ADS  Google Scholar 

  26. Y. Nagashima, Y. Morinaka, T. Kurihara, Y. Nagai, T. Hyodo, T. Shidara, K. Nakahara, Phys. Rev. B 58, 12676 (1998)

    Article  ADS  Google Scholar 

  27. O. Mogensen, J. Chem. Phys. 60, 998 (1974)

    Article  ADS  Google Scholar 

  28. M. Eldrup, A. Vehanen, P.J. Schultz, K.G. Lynn, Phys. Rev. B 32, 7048 (1985)

    Article  ADS  Google Scholar 

  29. A.P. Mills Jr., R.J. Wilson, Phys. Rev. A 26, 490 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren L. Andersen.

Additional information

Contribution to the Topical Issue “Electron and Positron Induced Processes”, edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, S.L., Johansen, R.R., Overgaard, J.B. et al. Positronium formation from porous silica in backscattering and transmission geometries. Eur. Phys. J. D 68, 124 (2014). https://doi.org/10.1140/epjd/e2014-40762-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40762-x

Keywords

Navigation