Skip to main content
Log in

Positron astrophysics and areas of relation to low-energy positron physics

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

I briefly review our general knowledge of positron astrophysics, focusing mostly on the theoretical and modelling aspects. The experimental/observational aspects of the topic have recently been reviewed elsewhere [E. Churazov et al., Mon. Nat. R. Astron. Soc. 411, 1727 (2011); N. Prantazos et al., Rev. Mod. Phys. 83, 1001 (2011)]. In particular, I highlight the interactions and cross sections of the reactions that the positrons undergo in various cosmic media. Indeed, these must be of high interest to both the positron astrophysics community and the low-energy positron physics community in trying to find common areas of potential collaboration for the future or areas of research that will help the astrophysics community make further progress on the problem. The processes undergone by positrons from the moments of their birth to their annihilation (in the interstellar medium or other locations) are thus examined. The physics of the positron interactions with gases and solids (dust grains) and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation take place, are briefly reviewed. An explanation is given about how all the relevant physical information is taken into account in order to calculate annihilation rates and spectra of the 511 keV emission in the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. In particular, an attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of low-energy positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place, and ultimately about the birth place and history of positrons in the Galaxy. The important complementarity between work done by the astrophysical and the positron physics communities is emphasised, and attempts are made to suggest avenues of future research for progress in the two fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.N. Johnson, F.R. Harnden, R.C. Haymes, ApJ 172, L1 (1972)

    Article  ADS  Google Scholar 

  2. M. Leventhal, C.J. MacCallum, P.D. Stang, ApJ 225, L11 (1978)

    Article  ADS  Google Scholar 

  3. R.W. Bussard, R. Ramaty, R.J. Drachman, ApJ 228, 928 (1979)

    Article  ADS  Google Scholar 

  4. N. Guessoum, P. Jean, W. Gillard, A&A 436, 171 (2005)

    Article  ADS  Google Scholar 

  5. N. Guessoum, R. Ramaty, R.E. Lingenfelter, ApJ 378, 170 (1991)

    Article  ADS  Google Scholar 

  6. J.F. Beacom, H. Yuksel, Phys. Rev. Lett. 97, 071102 (2006)

    Article  ADS  Google Scholar 

  7. P. Sizun, M. Cassé, S. Schanne, Phys. Rev. D 74, 063514 (2006)

    Article  ADS  Google Scholar 

  8. E. Churazov, R. Sunyaev, S. Sazonov, M. Revnivtsev, D. Varshalovich, Mon. Not. R. Astron. Soc. 357, 1377 (2005)

    Article  ADS  Google Scholar 

  9. P. Jean, J. Knodlseder, W. Gillard, N. Guessoum, K. Ferriere, A. Marcowith, V. Lonjou, J.P. Roques, A&A 445, 579 (2006)

    Article  ADS  Google Scholar 

  10. N. Prantzos et al., Rev. Mod. Phys. 83, 1001 (2011)

    Article  ADS  Google Scholar 

  11. R.J. Murphy, G.H. Share, J.G. Skibo, B. Kozlovsky, ApJ Suppl. Ser. 161, 495 (2005)

    Article  ADS  Google Scholar 

  12. R. Ramaty, R.J. Murphy, B. Kozlovsky, R.E. Lingenfelter, Sol. Phys. 86, 395 (1983)

    Article  ADS  Google Scholar 

  13. R.M. Bandyopadhyay, J. Silk, J.E. Taylor, T.J. Maccarone, Mon. Not. R. Astron. Soc. 392, 1115 (2009)

    Article  ADS  Google Scholar 

  14. N. Guessoum, P. Jean, N. Prantzos, A&A 457, 753 (2006)

    Article  ADS  Google Scholar 

  15. E. Churazov, S. Sazonov, S. Tsygankov, R. Sunyaev, D. Varshalovich, Mon. Not. R. Astron. Soc. 411, 1727 (2011)

    Article  ADS  Google Scholar 

  16. D.O. Chernyshov, K. Cheng, V.A. Dogiel, C. Ko, W. Ip, Mon. Not. R. Astron. Soc. 403, 817 (2010)

    Article  ADS  Google Scholar 

  17. S.I. Blinnikov, F.K. Röpke, E.I. Sorokina, M. Gieseler, M. Reinecke, C. Travaglio, W. Hillebrandt, M. Stritzinger, A&A 453, 229 (2006)

    Article  ADS  Google Scholar 

  18. K.-W. Chan, R.E. Lingenfelter, ApJ 405, 614 (1993)

    Article  ADS  Google Scholar 

  19. I.R. Seitenzahl, S. Taubenberger, S.A. Sim, Mon. Not. R. Astron. Soc. 400, 531 (2009)

    Article  ADS  Google Scholar 

  20. P.A. Milne, L.-S. The, M.D. Leising, ApJ Suppl. Ser. 124, 503 (1999)

    Article  ADS  Google Scholar 

  21. H.-J. Grimm, M. Gilfanov, R. Sunyaev, A&A 391, 923 (2002)

    Article  ADS  Google Scholar 

  22. N. Prantzos, in Proceedings of the 5th Integral Workshop on the Integral Universe, edited by V. Schoenfelder, G. Lichti, C. Winkler, ESA Special Publication (ESA, Nordwijk, 2004), Vol. 552, p. 15

  23. J.K. Daugherty, A.K. Harding, ApJ 273, 761 (1983)

    Article  ADS  Google Scholar 

  24. A.K. Harding, D. Lai, Rep. Prog. Phys. 69, 2631 (2006)

    Article  ADS  Google Scholar 

  25. C. Boehm, D. Hooper, J. Silk, M. Casse, J. Paul, Phys. Rev. Lett. 92, 101301 (2004)

    Article  ADS  Google Scholar 

  26. J.F. Gunion, D. Hooper, B. McElrath, Phys. Rev. D 73, 015011 (2006)

    Article  ADS  Google Scholar 

  27. D. Hooper, L.-T. Wang, Phys. Rev. D 70, 063506 (2004)

    Article  ADS  Google Scholar 

  28. C. Picciotto, M. Pospelov, Phys. Lett. B 605, 15 (2005)

    Article  ADS  Google Scholar 

  29. M. Pospelov, A. Ritz, M.B. Voloshin, Phys. Lett. B 662, 53 (2008)

    Article  ADS  Google Scholar 

  30. D.P. Finkbeiner, N. Weiner, Phys. Rev. D 76, 083519 (2007)

    Article  ADS  Google Scholar 

  31. M. Pospelov, A. Ritz, Phys. Lett. B 651, 208 (2007)

    Article  ADS  Google Scholar 

  32. L. Bergström, T. Bringmann, I. Cholis, D. Hooper, D. Weniger, Phys. Rev. Lett. 111, 171101 (2013)

    Article  ADS  Google Scholar 

  33. K. Iwata, R.G. Greaves, C.M. Surko, Can. J. Phys. 74, 407 (1996)

    Article  ADS  Google Scholar 

  34. K. Iwata, R.G. Greaves, C.M. Surko, Phys. Rev. A 55, 3586 (1997)

    Article  ADS  Google Scholar 

  35. T.J. Murphy, C.M. Surko, Phys. Rev. Lett. 67, 2954 (1991)

    Article  ADS  Google Scholar 

  36. N. Guessoum, P. Jean, W. Gillard, Mon. Not. R. Astron. Soc. 402, 1171 (2010)

    Article  ADS  Google Scholar 

  37. P. von Ballmoos et al., A&A 397, 635 (2003)

    Article  ADS  Google Scholar 

  38. E.L. Chupp, D.J. Forrest, A.N. Suri, in Solar Gamma-, X-, EUV-Radiation, edited by S.R. Kane, IAU Symposium (D. Reidel Publishing Co., Dordrecht, 1975), Vol. 68, p. 341

  39. C.J. Crannell, G. Joyce, R. Ramaty, C. Werntz, ApJ 210, 582 (1976)

    Article  ADS  Google Scholar 

  40. N. Guessoum, J.G. Skibo, R. Ramaty, in Proceedings of 25th International Cosmic Ray Conference 30 July–6 August, 1997, Durban, South Africa, edited by M.S. Potgieter, C. Raubenheimer, D.J. van der Walt (Potchefstroom University, Transvaal, South Africa, 1997), Vol. 3, p. 149

  41. P.A. Milne, J.D. Kurfess, R.L. Kinzer, M.D. Leising, New Astron. Rev. 46, 553 (2002)

    Article  ADS  Google Scholar 

  42. A. Gal-Yam et al., Nature 462, 624 (2009)

    Article  ADS  Google Scholar 

  43. G. Meynet, R. Hirschi, S. Ekstrom, A. Maeder, C. Georgy, P. Eggenberger, C. Chiappini, A&A 521, A30 (2010)

    Article  ADS  Google Scholar 

  44. F. Senziani, G.K. Skinner, P. Jean, M. Hernanz, A&A 485, 223 (2008)

    Article  ADS  Google Scholar 

  45. P. Martin, N. Guessoum, P. Jean, P. von Ballmoos, http://www.cesr.fr/˜pvb/astropositron/presentations˙files/Guessoum.pdf

  46. R.E. Lingenfelter, G.J. Hueter, in High Energy Transients in Astrophysics, edited by S.E. Woosley (AIP, New York, 1984), p. 558

  47. A.G. Aksenov, R. Ruffini, G.V. Vereshchagin, AIP Conf. Proc. 966, 191 (2008)

    Article  ADS  Google Scholar 

  48. M. Cassé, B. Cordier, J. Paul, S. Schanne, ApJ 602, L17 (2004)

    Article  ADS  Google Scholar 

  49. K. Ioka, K. Murase, K. Toma, S. Nagataki, T. Nakamura, Appl. J. Lett. 670, L77 (2007)

    Article  ADS  Google Scholar 

  50. E. Ramirez-Ruiz, K.-I. Nishikawa, Ch.B. Hededal, ApJ 671, 1877 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhal Guessoum.

Additional information

Contribution to the Topical Issue “Electron and Positron Induced Processes”, edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guessoum, N. Positron astrophysics and areas of relation to low-energy positron physics. Eur. Phys. J. D 68, 137 (2014). https://doi.org/10.1140/epjd/e2014-40705-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40705-7

Keywords

Navigation