Skip to main content
Log in

Adorable reversed field configuration with self-fields effect in a fel

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The dynamical behavior of relativistic electron governed by the combination of a realistic helical-wiggler free-electron laser (FEL) with a uniform axial guide magnetic field is investigated by the consideration of the effect of the relativistic electrons self-fields. The electron beam is assumed to have uniform density. In Raman regime, a three-dimensional Hamiltonian approach is derived in detail. The consideration of the additional scalar potential Φ s represents the basic feature of the analysis. The approach recognized the two usual constants of motion: one concerns the total energy while the other is the canonical axial angular momentum \(\hat P_{z'}\). After some tedious algebra, the dynamical variables problems are solved analytically to study stable and unstable fixed point. The additional scalar potential Φ s changes the nature of groups, in group II orbits reversed field configuration near \(\hat \rho _0 = 0\) converted to a simple group II. At the time of the variation of ε the energetic interaction zones are discussed. The stability zones of fixed points that allow an excellent interaction between the electron and the existing fields are limited. To validate our model, we apply it to the well-known experience of Conde and Bekefi [Phys. Lett. 67, 3082 (1991)] and get some encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Conde, G. Bekefi, Phys. Rev. Lett. 67, 3082 (1991)

    Article  ADS  Google Scholar 

  2. R. Bonifacio, F. Casagrande, Nucl. Instrum. Methods Phys. Res. A 239, 29 (1985)

    Article  ADS  Google Scholar 

  3. R. El-Bahi, M.N. Rhimi, Eur. Phys. J. D 57, 365 (2010)

    Article  ADS  Google Scholar 

  4. S.-C. Zhang, Y. Xu, Q. Liu, Phys. Rev. E 48, 3952 (1993)

    Article  ADS  Google Scholar 

  5. H.P. Freund, J.M. Antonsen Jr., Principles of Free Electron Lasers (Chapman and Hall, London, 1996)

  6. S. Zhang, Z. Zhang, Appl. Phys. Lett. 55, 1380 (1989)

    Article  ADS  Google Scholar 

  7. L. Frieland, Phys. Fluids 23, 2376 (1980)

    Article  ADS  Google Scholar 

  8. H.P. Freund, S. Johnston, P. Sprangle, IEEE J. Quantum Electron. QE-19, 322 (1983)

    Article  ADS  Google Scholar 

  9. C. Chen, R.C. Davidson, Phys. Fluids B 2, 171 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  10. C. Chen, R.C. Davidson, Phys. Rev. A 42, 5041 (1990)

    Article  ADS  Google Scholar 

  11. G. Spindler, G. Renz, Phys. Fluids B 3, 3517 (1991)

    Article  ADS  Google Scholar 

  12. G. Spindler, G. Renz, Nucl. Instrum. Methods Phys. Res. A 304, 492 (1991)

    Article  ADS  Google Scholar 

  13. L. Michel, A. Bourdier, J.M. Buzzi, Nucl. Instrum. Methods A 304, 465 (1991)

    Article  ADS  Google Scholar 

  14. M. Esmaeilzadeh, S. Ebrahimi, A. Saiahian, J.E. Willett, L.J. Willett, Phys. Plasmas 12, 093103 (2005)

    Article  ADS  Google Scholar 

  15. S. Mirzanejhad, M. Asri, Phys. Plasmas 12, 093108 (2005)

    Article  ADS  Google Scholar 

  16. S. Mirzanejhad, B. Maraghechi, T. Mohsenpour, Phys. Plasmas 11, 4777 (2004)

    Article  ADS  Google Scholar 

  17. M. Esmaeilzadeh, V. Ghfouri, Conference Infrared, Millimeter and Terahertz Waves, IRMMW-THz 2008, 33rd International Conference, Sept. 2008

  18. Shi-Chang Zhang, Jian-Bo Jin, Microwave Conference (Asia Pacific, 1999), Vol. 3, pp. 840–843

  19. S. Mirzanejhad, B. Maraghechi, T. Mohsenpour, J. Phys. D 39, 923 (2006)

    Article  ADS  Google Scholar 

  20. S. Reiche, Numerical Studies for a Single Pass High Gain Free-Electron Laser, Dissertation, Hamburg, 1999

  21. T.C. Marshall, Free-electron Lasers (Macmillan, New York, 1985)

  22. R.C Davidson, Theory of Nonneutral Plasma (Addison Wesley, Reading, MA, 1989)

  23. M.N. Rhimi, R. El-Bahi, A.W. Cheikhrouhou, Can. J. Phys. Rev. Can. Phys. 78, 1069 (2000)

    Article  ADS  Google Scholar 

  24. K.R. Chu, A.T. Lin, Phys. Rev. Lett. 67, 3235 (1991)

    Article  ADS  Google Scholar 

  25. H.P. Freund, A.K. Ganguly, Phys. Rev. A 28, 3438 (1983)

    Article  ADS  Google Scholar 

  26. H.P. Freund, Phys. Rev. A 27, 1977 (1983)

    Article  ADS  Google Scholar 

  27. H.P. Freund, P. Sprangle, D. Dillenburg, E.H. da Jornada, R.S. Schneider, B. Liberman, Phys. Rev. A 26, 2004 (1982)

    Article  ADS  Google Scholar 

  28. R.C. Davidson, H.S. Uhm, J. Appl. Phys. 53, 2910 (1982)

    Article  ADS  Google Scholar 

  29. R.G. Littlejohn, A.N. Kaufman, G.L. Johnston, Phys. Lett. A 120, 291 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  30. M.E. Konde, G. Bekefi, Phys. Rev. Lett. 67, 3082 (1991)

    Article  ADS  Google Scholar 

  31. S.C. Zhang, J. Elgin, Phys. Rev. E 55, 4684 (1997)

    Article  ADS  Google Scholar 

  32. H.P. Freund, A.K. Ganguly, IEEE J.Q. E 21, 1073 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. El-Bahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Bahi, R. Adorable reversed field configuration with self-fields effect in a fel. Eur. Phys. J. D 66, 240 (2012). https://doi.org/10.1140/epjd/e2012-30138-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30138-9

Keywords

Navigation