Skip to main content
Log in

Quasinormal modes and hidden conformal symmetry in the Reissner–Nordström black hole

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

It is shown that the scalar wave equation in the near-horizon limit respects a hidden SL(2, R) invariance in the Reissner–Nordström (RN) black hole spacetimes. We use the SL(2, R) symmetry to determine algebraically the purely imaginary quasinormal frequencies of the RN black hole. We confirm that these are exactly quasinormal modes of scalar perturbation around the near-horizon region of a near-extremal black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A. Castro, A. Maloney, A. Strominger, Phys. Rev. D 82, 024008 (2010). arXiv:1004.0996 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  2. C. Krishnan, J. High Energy Phys. 1007, 039 (2010). arXiv:1004.3537 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Cvetic, F. Larsen, Nucl. Phys. B 506, 107 (1997). hep-th/9706071

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M. Cvetic, F. Larsen, J. High Energy Phys. 1202, 122 (2012). arXiv:1106.3341 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  5. B. Chen, J. Long, Phys. Rev. D 82, 126013 (2010). arXiv:1009.1010 [hep-th]

    Article  ADS  Google Scholar 

  6. I. Sachs, S.N. Solodukhin, J. High Energy Phys. 0808, 003 (2008). arXiv:0806.1788 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  7. Y.S. Myung, Y.W. Kim, T. Moon, Y.J. Park, Phys. Rev. D 84, 024044 (2011). arXiv:1105.4205 [hep-th]

    Article  ADS  Google Scholar 

  8. Y.S. Myung, Y.-W. Kim, Y.-J. Park, Phys. Rev. D 85, 084007 (2012). arXiv:1201.3964 [hep-th]

    Article  ADS  Google Scholar 

  9. S. Bertini, S.L. Cacciatori, D. Klemm, Phys. Rev. D 85, 064018 (2012). arXiv:1106.0999 [hep-th]

    Article  ADS  Google Scholar 

  10. C.-M. Chen, J.-R. Sun, J. High Energy Phys. 1008, 034 (2010). arXiv:1004.3963 [hep-th]

    Article  ADS  Google Scholar 

  11. T. Ortin, C.S. Shahbazi, Phys. Lett. B 716, 231 (2012). arXiv:1204.5910 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Cvetic, F. Larsen, J. High Energy Phys. 1209, 076 (2012). arXiv:1112.4846 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  13. H. Li, arXiv:1108.0220 [hep-th]

  14. C.-M. Chen, S.P. Kim, I.-C. Lin, J.-R. Sun, M.-F. Wu, Phys. Rev. D 85, 124041 (2012). arXiv:1202.3224 [hep-th]

    Article  ADS  Google Scholar 

  15. S. Ferrara, G.W. Gibbons, R. Kallosh, Nucl. Phys. B 500, 75 (1997). hep-th/9702103

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. R.G. Daghigh, G. Kunstatter, D. Ostapchuk, V. Bagnulo, Class. Quantum Gravity 23, 5101 (2006). gr-qc/0604073

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. W.T. Kim, J.J. Oh, Phys. Lett. B 514, 155 (2001). hep-th/0105112

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. S. Hod, Phys. Lett. A 374, 2901 (2010). arXiv:1006.4439 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  19. Y.S. Myung, T. Moon, Phys. Rev. D 86, 024006 (2012). arXiv:1204.2116 [hep-th]

    Article  ADS  Google Scholar 

  20. V. Cardoso, J.P.S. Lemos, Phys. Rev. D 63, 124015 (2001). gr-qc/0101052

    Article  MathSciNet  ADS  Google Scholar 

  21. R. Cordero, A. Lopez-Ortega, I. Vega-Acevedo, Gen. Relativ. Gravit. 44, 917 (2012). arXiv:1201.3605 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. E. Berti, V. Cardoso, A.O. Starinets, Class. Quantum Gravity 26, 163001 (2009). arXiv:0905.2975 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Chen and C.-M. Chen for helpful discussions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) through the Center for Quantum Spacetime (CQUeST) of Sogang University with grant number 2005-0049409. Y.S. Myung was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-R1A1A2A10040499). Y.-J. Park was also supported by World Class University program funded by the Ministry of Education, Science and Technology through the National Research Foundation of Korea (No. R31-20002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Soo Myung.

Appendix: A computation of QNFs around the near-extremal RN black hole

Appendix: A computation of QNFs around the near-extremal RN black hole

In this appendix, we show that a scalar propagating around the near-horizon region of a near-extremal RN black hole has purely imaginary QNFs. Let us start with the Schrödinger equation (59) with the near-horizon and near-extremal RN potential (62). Introducing a new variable [20]

$$ x=\frac{1}{\cosh^2(\tilde{\kappa}\rho_*)},\quad x\in[0,1], $$
(A.1)

Eq. (59) can be written as

(A.2)

By changing to a new wave function y through

$$ R=x^{-\frac{i\omega}{2\tilde{\kappa}}}(1-x)^{-\frac{l}{2}}y, $$
(A.3)

Eq. (A.2) can be transformed into a standard hypergeometric equation [21]

$$ x(1-x)y''+\bigl[c-(a+b+1)x \bigr]y'-aby=0 $$
(A.4)

with

(A.5)

In order to obtain the quasinormal modes, we have to check whether or not solutions of Eq. (A.2) satisfy the boundary conditions: ingoing waves near the horizon (x=0) and zero (Dirichlet condition) at infinity of x=1. Taking into account e iωt, such a solution takes the form of

$$ R=x^{-\frac{i\omega}{2\tilde{\kappa}}}(1-x)^{-\frac{l}{2}}{}_2F_1[a,b,c;x], $$
(A.6)

where 2 F 1[a,b,c;x] is a standard hypergeometric function. Imposing the boundary condition at infinity (x→1, ρ →0, \(\tilde{\rho}\rightarrow\nobreak \infty\)), we recall a property of the hypergeometric function

$$ \lim_{x\rightarrow1}{}_2F_1[a,b,c;x]= \frac{\varGamma(c)\varGamma (c-a-b)}{\varGamma(c-a)\varGamma(c-b)}. $$
(A.7)

The Dirichlet boundary condition can be achieved when choosing

$$ c-a=-n\quad {\rm or}\quad c-b=-n $$
(A.8)

with n=0, 1, 2,… . Therefore, using (A.8) together with (A.5), the QNFs are given by

$$ \omega_n=-i\tilde{\kappa}(2n+l+1),\qquad \omega_n=-i\tilde{\kappa}(2n+l+2), $$
(A.9)

which are combined to give a single expression of purely imaginary QNFs

$$ \tilde{\omega}_n=-i\tilde{\kappa}(n+l+1). $$
(A.10)

This is the exactly same form as found in the QNFs (66).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YW., Myung, Y.S. & Park, YJ. Quasinormal modes and hidden conformal symmetry in the Reissner–Nordström black hole. Eur. Phys. J. C 73, 2440 (2013). https://doi.org/10.1140/epjc/s10052-013-2440-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2440-8

Keywords

Navigation