Skip to main content
Log in

Compactified rotating branes in the matrix model, and excitation spectrum towards one loop

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study compactified brane solutions of type \(\mathbb{R}^{4} \times K\) in the IIB matrix model, and obtain explicitly the bosonic and fermionic fluctuation spectrum required to compute the one-loop effective action. We verify that the one-loop contributions are UV finite for \(\mathbb{R}^{4} \times T^{2}\), and supersymmetric for \(\mathbb{R}^{3} \times S^{1}\). The higher Kaluza–Klein modes are shown to have a gap in the presence of flux on T 2, and potential problems concerning stability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This is expected to hold also in the presence of compactified extra dimensions, due to the non-commutativity of the brane.

  2. One-loop finiteness holds even on 6D backgrounds, but not for higher loops. This is consistent with well-known results [1416] for SYM theory.

  3. Note that \(\mathcal{M}= \mathbb {R}^{3} \times S^{1}\) is symplectic while \(\mathbb {R}^{3}\) is not. Thus one can raise or lower indices by introducing an effective metric G μν on \(\mathcal{M}\) following [7]. In this paper we short-cut these geometrical considerations, and use a tilde to indicate that a momentum is in \(T^{*}_{\mathcal{M}}\) rather than \(T_{\mathcal{M}}\).

  4. In fact we will only need Γ 0,…,Γ 6 for the computations ahead.

  5. The crossing of the corresponding energy shells at p μ=0 will lead to mixing of the corresponding modes. This corresponds to the mixing of gravitational modes found in [8].

References

  1. N. Ishibashi, H. Kawai, Y. Kitazawa, A. Tsuchiya, Nucl. Phys. B 498, 467–491 (1997). arXiv:hep-th/9612115

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. A. Chatzistavrakidis, H. Steinacker, G. Zoupanos, J. High Energy Phys. 09, 115 (2011). arXiv:1107.0265

    Article  MathSciNet  ADS  Google Scholar 

  3. H. Aoki, Prog. Theor. Phys. 125, 521–536 (2011). arXiv:1011.1015

    Article  ADS  Google Scholar 

  4. H. Steinacker, Prog. Theor. Phys. 126, 613–636 (2012). arXiv:1106.6153

    Article  ADS  Google Scholar 

  5. D. Bak, K.-M. Lee, Phys. Lett. B 509, 168–174 (2001). arXiv:hep-th/0103148

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A. Connes, M.R. Douglas, A.S. Schwarz, J. High Energy Phys. 9802, 003 (1998). arXiv:hep-th/9711162

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. H. Steinacker, Class. Quantum Gravity 27, 133001 (2010). arXiv:1003.4134

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Steinacker, J. High Energy Phys. 07, 156 (2012). arXiv:1202.6306

    Article  MathSciNet  ADS  Google Scholar 

  9. H. Steinacker, J. High Energy Phys. 1301, 112 (2013). arXiv:1210.8364

    Article  ADS  Google Scholar 

  10. D.N. Blaschke, H. Steinacker, M. Wohlgenannt, J. High Energy Phys. 03, 002 (2011). arXiv:1012.4344

    Article  MathSciNet  ADS  Google Scholar 

  11. D.N. Blaschke, H. Steinacker, J. High Energy Phys. 10, 120 (2011). arXiv:1109.3097

    Article  MathSciNet  ADS  Google Scholar 

  12. I. Jack, D.R.T. Jones, New J. Phys. 3, 19 (2001). arXiv:hep-th/0109195

    Article  MathSciNet  ADS  Google Scholar 

  13. S.-W. Kim, J. Nishimura, A. Tsuchiya, Phys. Rev. Lett. 108, 011601 (2012). arXiv:1108.1540

    Article  ADS  Google Scholar 

  14. M.B. Green, J.H. Schwarz, L. Brink, Nucl. Phys. B 198, 474–492 (1982)

    Article  ADS  Google Scholar 

  15. E.S. Fradkin, A.A. Tseytlin, Phys. Lett. B 123, 231–236 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. P.S. Howe, K.S. Stelle, Phys. Lett. B 137, 175 (1984)

    Article  ADS  Google Scholar 

  17. B. Janssen, Y. Lozano, D. Rodriguez-Gomez, Nucl. Phys. B 711, 392–406 (2005). arXiv:hep-th/0406148

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. M. Chaichian, A. Demichev, P. Prešnajder, Nucl. Phys. B 567, 360–390 (2000). arXiv:hep-th/9812180

    Article  Google Scholar 

  19. A. Polychronakos, H. Steinacker, J. Zahn, Brane compactifications and 4-dimensional geometry in the IKKT model. arXiv:1302.3707

Download references

Acknowledgements

D.N. Blaschke is a recipient of an APART fellowship of the Austrian Academy of Sciences, and is also grateful for the hospitality of the theory division of LANL and its partial financial support. The work of H.S. is supported by the Austrian Fonds für Wissenschaft und Forschung under grant P24713.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel N. Blaschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaschke, D.N., Steinacker, H.C. Compactified rotating branes in the matrix model, and excitation spectrum towards one loop. Eur. Phys. J. C 73, 2414 (2013). https://doi.org/10.1140/epjc/s10052-013-2414-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2414-x

Keywords

Navigation