Skip to main content
Log in

Analytical study of greybody factor and quasinormal modes for the scalar field in rotating linear dilaton black hole

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The rotating linear dilaton black hole is an asymptotically non-flat solution to Einstein–Maxwell-Dilaton–Axion gravity theory due to the existence of non-trivial matter fields. We have analytically studied the wave equation of scalar field in this background and shown that the radial wave equation can be solved in terms of hypergeometric function. By determining the ingoing and the outgoing fluxes at the asymptotic infinity, we have found the analytical expressions for reflection coefficient and greybody factor for certain scalar modes. We further apply the method of Damour–Ruffini to investigate the Hawking radiation of the rotating linear dilaton black hole, which shows that the Hawking temperature is proportional to the surface gravity of event horizon. Finally, the quasinormal modes of scalar field perturbation are also presented, which shows that the rotating linear dilation black hole is unstable for certain modes apart from the superradiant modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  2. W.G. Unruh, Phys. Rev. D 14, 3251 (1976)

    Article  ADS  Google Scholar 

  3. T. Damour, R. Ruffini, Phys. Rev. D 14, 332 (1976)

    Article  ADS  Google Scholar 

  4. S. Christensen, S. Fulling, Phys. Rev. D 15, 2088 (1977)

    Article  ADS  Google Scholar 

  5. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  6. S.P. Robinson, F. Wilczek, Phys. Rev. Lett. 95, 011303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Iso, H. Umetsu, F. Wilczek, Phys. Rev. Lett. 96, 151302 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  8. D.N. Page, Phys. Rev. D 13, 198 (1976)

    Article  ADS  Google Scholar 

  9. J. Maldacena, A. Strominger, Phys. Rev. D 55, 861 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  10. S.S. Gubser, I.R. Klebanov, Phys. Rev. Lett. 77, 4491 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. I.R. Klebanov, M. Krasnitz, Phys. Rev. D 55, 3250 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  12. I.R. Klebanov, S.D. Mathur, Nucl. Phys. B 500, 115 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. M. Cvetic, F. Larsen, Phys. Rev. D 56, 4994 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Cvetic, F. Larsen, Nucl. Phys. B 506, 107 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. M. Cvetic, F. Larsen, Phys. Rev. D 57, 6297 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  16. H.W. Lee, Y.S. Myung, Phys. Rev. D 58, 104013 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  17. E. Jung, S. Kim, D.K. Park, J. High Energy Phys. 0409, 005 (2004)

    Article  ADS  Google Scholar 

  18. S. Fernando, Gen. Relativ. Gravit. 37, 461 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. J. Grain, A. Barrau, P. Kanti, Phys. Rev. D 72, 104016 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Creek, O. Efthimiou, P. Kanti, K. Tamvakis, Phys. Rev. D 75, 084043 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Creek, O. Efthimiou, P. Kanti, K. Tamvakis, Phys. Rev. D 76, 104013 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  22. W. Kim, J.J. Oh, J. Korean Phys. Soc. 52, 986 (2008)

    Article  ADS  Google Scholar 

  23. S. Chen, B. Wang, R. Su, W.-Y. Hwang, J. High Energy Phys. 0803, 019 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Chen, B. Wang, R. Su, Phys. Rev. D 77, 024039 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Chen, J. Jing, arXiv:0809.3164

  26. S. Chen, B. Wang, J. Jing, Phys. Rev. D 78, 064030 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Chen, B. Wang, R. Su, Phys. Rev. D 77, 124011 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  28. H. Ishihara, J. Soda, Phys. Rev. D 76, 064022 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  29. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Phys. Rev. D 82, 124038 (2010)

    Article  ADS  Google Scholar 

  30. Y. Decanini, G. Esposito-Farese, A. Folacci, Phys. Rev. D 83, 044032 (2011)

    Article  ADS  Google Scholar 

  31. P. Gonzalez, E. Papantonopoulos, J. Saavedra, J. High Energy Phys. 1008, 050 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  32. P. Gonzalez, C. Campuzano, E. Rojas, J. Saavedra, arXiv:1003.2753 [gr-qc]

  33. P. Gonzalez, J. Saavedra, arXiv:1104.4795 [gr-qc]

  34. C. Ding, S. Chen, J. Jing, Phys. Rev. D 82, 024031 (2010)

    Article  ADS  Google Scholar 

  35. C. Ding, C. Liu, J. Jing, S. Chen, J. High Energy Phys. 1011, 146 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  36. V. Cardoso, M. Cavaglia, L. Gualtieri, Phys. Rev. Lett. 96, 071301 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  37. V. Cardoso, M. Cavaglia, L. Gualtieri, J. High Energy Phys. 0602, 021 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  38. S.R. Das, G. Gibbons, S.D. Mathur, Phys. Rev. Lett. 78, 417 (1997)

    Article  ADS  Google Scholar 

  39. K. Ghoroku, A.L. Larsen, Phys. Lett. B 328, 28 (1994)

    Article  ADS  Google Scholar 

  40. M. Natsuume, N. Sakai, M. Sato, Mod. Phys. Lett. A 11, 1467 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. D. Birmingham, I. Sachs, S. Sen, Phys. Lett. B 413, 281 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  42. J.J. Oh, W. Kim, J. High Energy Phys. 0901, 067 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  43. J.J. Oh, W. Kim, Eur. Phys. J. C 65, 275 (2010)

    Article  ADS  Google Scholar 

  44. H.-C. Kao, W.-Y. Wen, J. High Energy Phys. 0909, 102 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  45. B. Chen, B. Ning, Phys. Rev. D 82, 124027 (2010)

    Article  ADS  Google Scholar 

  46. R. Li, M.-F. Li, J.-R. Ren, Eur. Phys. J. C 71, 1566 (2011)

    ADS  Google Scholar 

  47. R. Li, J.-R. Ren, Phys. Rev. D 83, 064024 (2011)

    Article  ADS  Google Scholar 

  48. G. Clement, J.C. Fabris, G.T. Marques, Phys. Lett. B 651, 54 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. S.H. Mazharimousavi, I. Sakalli, M. Halilsoy, Phys. Lett. B 672, 177 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  50. P.I. Slavov, S.S. Yazadjiev, Phys. Rev. D 86, 084042 (2012)

    Article  ADS  Google Scholar 

  51. G. Clement, D. Galtsov, C. Leygnac, Phys. Rev. D 67, 024012 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  52. J.D. Brown, J.W. York, Phys. Rev. D 47, 1407 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  53. R. Li, J.-R. Ren, J. High Energy Phys. 1009, 039 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  54. P.-J. Mao, R. Li, L.-Y. Jia, J.-R. Ren, Eur. Phys. J. C 71, 1527 (2011)

    Article  ADS  Google Scholar 

  55. J.-R. Ren, P.-J. Mao, R. Li, L.-Y. Jia, Class. Quantum Gravity 27, 165016 (2010)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank Pu-Jian Mao and Ming-Fan Li for reading the manuscript and useful comments. This work was supported by NSFC, China (Grants No. 11147145 and No. 11205048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Li.

Appendix: Greybody factor for the modes ωr 0<1/2

Appendix: Greybody factor for the modes ωr 0<1/2

In the present case, the parameter β is real which makes the splitting of the ingoing and the outgoing flux at the asymptotic infinity a non-trivial task. The physical origin is that the rotating linear dilaton black hole is not asymptotically flat.

By inserting the asymptotic solution (28) into the definition of flux, one can obtain the flux at the asymptotic infinity

(A.1)

We can define the ingoing and the outgoing wave coefficients D in and D out by splitting up the coefficients D 1 and D 2 as D 1=D in+D out and D 2=i(D inD out). Then, the asymptotic flux can be written in the form of

(A.2)

The greybody factor can be calculated by

(A.3)

where \(\mathcal{D}\) is given by the following expression:

(A.4)

One can analyse the properties of greybody factor of scalar field in rotating linear dilaton black hole background in the low energy and low angular momentum limits. This aspect is out of scope of the present paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R. Analytical study of greybody factor and quasinormal modes for the scalar field in rotating linear dilaton black hole. Eur. Phys. J. C 73, 2296 (2013). https://doi.org/10.1140/epjc/s10052-013-2296-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2296-y

Keywords

Navigation