Skip to main content
Log in

Linear vs. non-linear QCD evolution: from HERA data to LHC phenomenology

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The very precise combined HERA data provides a testing ground in which the relevance of novel QCD regimes, other than the successful linear DGLAP evolution, in small-x inclusive DIS data can be ascertained. We present a study of the dependence of the AAMQS fits, based on the running coupling BK non-linear evolution equations (rcBK), on the fitted dataset. This allows for the identification of the kinematical region where rcBK accurately describes the data, and thus for the determination of its applicability boundary. We compare the rcBK results with NNLO DGLAP fits, obtained with the NNPDF methodology with analogous kinematical cuts. Further, we explore the impact on LHC phenomenology of applying stringent kinematical cuts to the low-x HERA data in a DGLAP fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The BK equation written here assumes translational invariance of the dipole amplitude \(\mathcal {N}\). Also, some constant factors have been absorbed in the evolution kernel \(\mathcal{K}\), see e.g. [22] for precise definitions.

  2. It is indeed straightforward to check that the non-linear term in Eq. (1) prevents the dipole scattering amplitude to grow above unity, provided the initial condition is unitary itself, i.e. \(\mathcal{N}\leq1\).

  3. The photon wave function \(\varPsi_{T,L}^{f}\) in Eq. (3) peaks at r∼2/Q.

  4. In the NNPDF analysis the full information on the correlated systematics is taken into account into the definition of the χ 2, and the normalization uncertainties are included following the t 0 prescription [38]. Let us recall that non negligible differences are expected if the systematic uncertainties are added in quadrature to the statistical error, and that the χ 2 will be artificially about 15 % lower in the latter approximation [23].

  5. The distances defined to compare PDFs in the NNPDF framework are defined in Appendix B of Ref. [37]. They should not be confused with the relative and statistical distances, Eqs. (6) and (7), introduced later in this work.

  6. In the AAMQS approach the χ 2 is calculated as \(\chi^{2}=\sum_{i}\frac{(\sigma_{\mathrm {r,th}}-\sigma_{\mathrm{r,exp}})^{2}}{\Delta\sigma_{\mathrm {r,exp}}^{2}}\), where \(\Delta\sigma_{\mathrm{r,exp}}^{2}\) is the total experimental error obtained adding in quadrature all experimental uncertainties, and thus neglects the effects of correlations.

  7. In the context of future DIS facilities, the physics that can be probed at low x within the DGLAP framework has been studied in [44, 45].

  8. Of course such deviations from fixed order DGLAP might also contaminate extractions of the strong coupling constant from global PDF analyses, in which the HERA data play an important role [46].

References

  1. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  2. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  3. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  4. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977)

    MathSciNet  ADS  Google Scholar 

  5. I. Balitsky, L. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

    Google Scholar 

  6. M. Ciafaloni et al., Phys. Rev. D 68, 114003 (2003). hep-ph/0307188

    ADS  Google Scholar 

  7. G. Altarelli, R.D. Ball, S. Forte, Nucl. Phys. B 799, 199 (2008). arXiv:0802.0032

    Article  ADS  MATH  Google Scholar 

  8. S. Forte, G. Altarelli, R.D. Ball, Nucl. Phys. Proc. Suppl. 191, 64 (2009). arXiv:0901.1294

    Article  ADS  Google Scholar 

  9. C. White, R. Thorne, Phys. Rev. D 75, 034005 (2007). hep-ph/0611204

    ADS  Google Scholar 

  10. I. Balitsky, Nucl. Phys. B 463, 99 (1996). hep-ph/9509348

    Article  ADS  Google Scholar 

  11. Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999). hep-ph/9901281

    ADS  Google Scholar 

  12. J. Jalilian-Marian et al., Phys. Rev. D 59, 014014 (1998). hep-ph/9706377

    ADS  Google Scholar 

  13. A. Kovner, J.G. Milhano, H. Weigert, Phys. Rev. D 62, 114005 (2000). hep-ph/0004014

    ADS  Google Scholar 

  14. H. Weigert, Nucl. Phys. A 703, 823 (2002). hep-ph/0004044

    Article  ADS  Google Scholar 

  15. A.M. Stasto, K.J. Golec-Biernat, J. Kwiecinski, Phys. Rev. Lett. 86, 596 (2001). hep-ph/0007192

    Article  ADS  Google Scholar 

  16. E. Gardi et al., Nucl. Phys. A 784, 282 (2007). hep-ph/0609087

    Article  ADS  Google Scholar 

  17. Y. Kovchegov, H. Weigert, Nucl. Phys. A 784, 188 (2007). hep-ph/0609090

    Article  ADS  Google Scholar 

  18. I.I. Balitsky, Phys. Rev. D 75, 014001 (2007). hep-ph/0609105

    Article  ADS  Google Scholar 

  19. I. Balitsky, G.A. Chirilli, Phys. Rev. D 77, 014019 (2008). arXiv:0710.4330

    ADS  Google Scholar 

  20. J.L. Albacete, Y.V. Kovchegov, Phys. Rev. D 75, 125021 (2007). arXiv:0704.0612 [hep-ph]

    ADS  Google Scholar 

  21. J.L. Albacete et al., Phys. Rev. D 80, 034031 (2009). arXiv:0902.1112

    ADS  Google Scholar 

  22. J.L. Albacete et al., Eur. Phys. J. C 71, 1705 (2011). arXiv:1012.4408

    Article  ADS  Google Scholar 

  23. F.D. Aaron et al. (H1 Collaboration), J. High Energy Phys. 01, 109 (2010). arXiv:0911.0884

    Article  ADS  Google Scholar 

  24. J. Kuokkanen, K. Rummukainen, H. Weigert, Nucl. Phys. A 875, 29 (2012). arXiv:1108.1867

    Article  ADS  Google Scholar 

  25. F. Caola, S. Forte, Phys. Rev. Lett. 101, 022001 (2008). arXiv:0802.1878

    Article  ADS  Google Scholar 

  26. S. Forte, R.D. Ball, Acta Phys. Pol. B 26, 2097 (1995). hep-ph/9512208

    Google Scholar 

  27. T. Lastovicka, Eur. Phys. J. C 24, 529 (2002). hep-ph/0203260

    Article  Google Scholar 

  28. L. Del Debbio et al. (The NNPDF Collaboration), J. High Energy Phys. 03, 080 (2005). hep-ph/0501067

    Google Scholar 

  29. F. Caola, S. Forte, J. Rojo, Phys. Lett. B 686, 127 (2010). arXiv:0910.3143

    ADS  Google Scholar 

  30. F. Caola, S. Forte, J. Rojo, Nucl. Phys. A 854, 32 (2011). arXiv:1007.5405

    Article  ADS  Google Scholar 

  31. S. Moch, J. Vermaseren, A. Vogt, Nucl. Phys. B 688, 101 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. S. Moch, J. Vermaseren, A. Vogt, Phys. Lett. B 691, 129 (2004)

    MathSciNet  MATH  Google Scholar 

  33. R.D. Ball et al. (The NNPDF Collaboration), Nucl. Phys. B 855, 153 (2012). arXiv:1107.2652

    Article  ADS  Google Scholar 

  34. S. Forte et al., Nucl. Phys. B 834, 116 (2010). arXiv:1001.2312

    Article  ADS  MATH  Google Scholar 

  35. R.D. Ball et al. (The NNPDF Collaboration), Nucl. Phys. B 809, 1 (2009). arXiv:0808.1231

    Article  ADS  MATH  Google Scholar 

  36. R.D. Ball et al. (The NNPDF Collaboration), Nucl. Phys. B 823, 195 (2009). arXiv:0906.1958

    Article  ADS  MATH  Google Scholar 

  37. R.D. Ball et al. (The NNPDF Collaboration), Nucl. Phys. B 838, 136 (2010). arXiv:1002.4407

    Article  ADS  MATH  Google Scholar 

  38. R.D. Ball et al. (The NNPDF Collaboration), J. High Energy Phys. 05, 075 (2010). arXiv:0912.2276

    Article  ADS  Google Scholar 

  39. H.L. Lai et al., Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241

    ADS  Google Scholar 

  40. H1 and ZEUS Collaborations, H1prelim–10-044, ZEUS-prel-10-008 (2010)

  41. H1 and ZEUS Collaborations, H1prelim–11-042, ZEUS-prel-11-00 (2011)

  42. M. Klein et al., in EPAC’08, 11th European Particle Accelerator Conference, (2008)

    Google Scholar 

  43. A. Deshpande, R. Milner, R. Venugopalan (Eds.), The electron ion collider: a white paper. BNL Report BNL-68933-02/07-REV

  44. A. Accardi, V. Guzey, J. Rojo, arXiv:1106.3839 (2011)

  45. J. Rojo, F. Caola, arXiv:0906.2079 (2009)

  46. R.D. Ball et al., Phys. Lett. B 707, 66 (2012). arXiv:1110.2483

    ADS  Google Scholar 

  47. C. Anastasiou et al., Phys. Rev. D 69, 094008 (2004). hep-ph/0312266

    ADS  Google Scholar 

  48. M. Aliev et al., Comput. Phys. Commun. 182, 1034 (2011). arXiv:1007.1327

    Article  ADS  MATH  Google Scholar 

  49. R. Bonciani, G. Degrassi, A. Vicini, J. High Energy Phys. 11, 095 (2007). arXiv:0709.4227

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research of J.L.A. is supported by a fellowship from the Théorie LHC France initiative funded by the IN2P3. J.R. is grateful to S. Forte for discussions. The research of J.R. has been supported by a Marie Curie Intra-European Fellowship of the European Community’s 7th Framework Programme under contract number PIEF-GA-2010-272515. J.G.M. acknowledge the support of Fundação para a Ciência e a Tecnologia (Portugal) under project CERN/FP/116379/2010. The work of P.Q.A. is funded by the French ANR under contract ANR-09-BLAN-0060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Quiroga-Arias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albacete, J.L., Milhano, J.G., Quiroga-Arias, P. et al. Linear vs. non-linear QCD evolution: from HERA data to LHC phenomenology. Eur. Phys. J. C 72, 2131 (2012). https://doi.org/10.1140/epjc/s10052-012-2131-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2131-x

Keywords

Navigation