Skip to main content
Log in

Energy spectrum and persistent current in an armchair hexagonal graphene ring in the presence of vacancies, Rashba and Zeeman interactions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effects of random vacancies, Rashba and Zeeman interactions on the energy spectrum and persistent current in an armchair hexagonal graphene ring are investigated. It is found that in the absence of Rashba and Zeeman interactions, both the inner and outer radii of an ordered graphene ring are the two dominant parameters in determining the value of the persistent current. Furthermore, zero energy modes resulting from vacancies increase the persistent current independent of the number of carbon atoms or Rashba and Zeeman interactions. However, Rashba and Zeeman interactions significantly decrease the persistent current in an ordered armchair hexagonal graphene ring. Therefore, by creating artificial vacancies, we can compensate for the negative effect of Rashba and Zeeman interactions on the persistent current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S.L. Abergel, V.M. Apalkov, T. Chakraborty, Phys. Rev. B 78, 193405 (2008)

    Article  ADS  Google Scholar 

  2. M.M. Ma, J.W. Ding, N. Xu, Nanoscale 1, 387 (2009)

    Article  ADS  Google Scholar 

  3. A.S. Moskalenko, J. Berakdar, Phys. Rev. B 80, 193407 (2009)

    Article  ADS  Google Scholar 

  4. D.A. Bahamon, A.L.C. Pereira, P.A. Schulz, Phys. Rev. B 79, 125414 (2009)

    Article  ADS  Google Scholar 

  5. N.M.R. Peres, J.N.B. Rodrigues, T. Stauber, J.M.B. Lopes dos Santos, J. Phys.: Condens. Matter 21, 344202 (2009)

    Google Scholar 

  6. J. Wurm, M. Wimmer, H.U. Baranger, K. Richter, Semicond. Sci. Technol. 25, 034003 (2010)

    Article  ADS  Google Scholar 

  7. M.M. Ma, J.W. Ding, Solid State Commun. 150, 1196 (2010)

    Article  ADS  Google Scholar 

  8. M. Zarenia, J.M. Pereira, A. Chaves, F.M. Peeters, G.A. Farias, Phys. Rev. B 81, 045431 (2010)

    Article  ADS  Google Scholar 

  9. P. Potasz, A.D. Gçülü, P. Hawrylak, Phys. Rev. B 82, 075425 (2010)

    Article  ADS  Google Scholar 

  10. Y. Cong-Hua, W. Lian-Fu, J. Phys.: Condens. Matter 22, 295503 (2010)

    Google Scholar 

  11. P. Potasz, A.D. Gçülü, O. Voznyy, J.A. Folk, P. Hawrylak, Phys. Rev. B 83, 174441 (2011)

    Article  ADS  Google Scholar 

  12. C.A. Downing, D.A. Stone, M.E. Portnoi, Phys. Rev. B 84, 155437 (2011)

    Article  ADS  Google Scholar 

  13. N. Abedpour, R. Asgari, F. Guinea, Phys. Rev. B 84, 115437 (2011)

    Article  ADS  Google Scholar 

  14. J. Schelter, P. Recher, B. Trauzettel, Solid State Commun. 152, 1411 (2012)

    Article  ADS  Google Scholar 

  15. W. Weihua, J. Phys.: Condens. Matter 24, 402202 (2012)

    Google Scholar 

  16. J.-L. Zhu, X. Wang, N. Yang, Phys. Rev. B 86, 125435 (2012)

    Article  ADS  Google Scholar 

  17. D. Smirnov, H. Schmidt, R.J. Haug, Appl. Phys. Lett. 100, 203114 (2012)

    Article  ADS  Google Scholar 

  18. Y. Nam, J.S. Yoo, Y.W. Park, N. Lindvall, T. Bauch, A. Yurgens, Carbon 50, 5562 (2012)

    Article  Google Scholar 

  19. I. Romanovsky, C. Yannouleas, U. Landman, Phys. Rev. B 85, 165434 (2012)

    Article  ADS  Google Scholar 

  20. A.D. Gçülü, M. Grabowski, P. Hawrylak, Phys. Rev. B 87, 035435 (2013)

    Article  ADS  Google Scholar 

  21. V.H. Nguyen, Y.M. Niquet, P. Dollfus, Phys. Rev. B 88, 035408 (2013)

    Article  ADS  Google Scholar 

  22. I. Romanovsky, C. Yannouleas, U. Landman, Phys. Rev. B 87, 165431 (2013)

    Article  ADS  Google Scholar 

  23. D. Faria, A. Latgé, S.E. Ulloa, N. Sandler, Phys. Rev. B 87, 241403 (2013)

    Article  ADS  Google Scholar 

  24. M. Grujić, M. Tadić, F.M. Peeters, Phys. Rev. B 87, 085434 (2013)

    Article  ADS  Google Scholar 

  25. Z. Shengli, C. Huawei, Z. Erhu, L. Daqing, Europhys. Lett. 103, 58005 (2013)

    Article  Google Scholar 

  26. S. Mahnia, A. Phirouznia, J. Comput. Electron. 13, 224 (2014)

    Article  Google Scholar 

  27. D.R. da Costa, A. Chaves, M. Zarenia, J.M. Pereira Jr., G.A. Farias, F.M. Peeters, Phys. Rev. B 89, 075418 (2014)

    Article  ADS  Google Scholar 

  28. S. Russo, J.B. Oostinga, D. Wehenkel, H.B. Heersche, S.S. Sobhani, L.M.K. Vandersypen, A.F. Morpurgo, Phys. Rev. B 77, 085413 (2008)

    Article  ADS  Google Scholar 

  29. F.M. Magdalena Huefner, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, T. Ihn, Phys. Stat. Sol. B 246, 2756 (2009)

    Article  ADS  Google Scholar 

  30. L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K. Kelly, B. Yakobson, P. Ajayan, Nano Res. 1, 116 (2008)

    Article  Google Scholar 

  31. V.M. Pereira, F. Guinea, J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Phys. Rev. Lett. 96, 036801 (2006)

    Article  ADS  Google Scholar 

  32. S. Das Sarma, E.H. Hwang, Q. Li, Phys. Rev. B 85, 195451 (2012)

    Article  ADS  Google Scholar 

  33. J.J. Palacios, J. Fernández-Rossier, L. Brey, Phys. Rev. B 77, 195428 (2008)

    Article  ADS  Google Scholar 

  34. F. Ducastelle, Phys. Rev. B 88, 075413 (2013)

    Article  ADS  Google Scholar 

  35. T. Luo, A.P. Iyengar, H.A. Fertig, L. Brey, Phys. Rev. B 80, 165310 (2009)

    Article  ADS  Google Scholar 

  36. M. Omidi, E. Faizabadi, Solid State Commun. 193, 20 (2014)

    Article  ADS  Google Scholar 

  37. E. Faizabadi, L. Eslami, J. Appl. Phys. 111, 124312 (2012)

    Article  ADS  Google Scholar 

  38. E. Faizabadi, A. Najafi, Solid State Commun. 150, 1404 (2010)

    Article  ADS  Google Scholar 

  39. P. Földi, B. Molnár, M.G. Benedict, F.M. Peeters, Phys. Rev. B 71, 033309 (2005)

    Article  ADS  Google Scholar 

  40. B.L. Huang, M.C. Chang, C.Y. Mou, J. Phys.: Condens. Matter 24, 245304 (2012)

    ADS  Google Scholar 

  41. N. Bolívar, E. Medina, B. Berche, Phys. Rev. B 89, 125413 (2014)

    Article  ADS  Google Scholar 

  42. P. Recher, B. Trauzettel, A. Rycerz, Y.M. Blanter, C.W.J. Beenakker, A.F. Morpurgo, Phys. Rev. B 76, 235404 (2007)

    Article  ADS  Google Scholar 

  43. Y.S. Dedkov, M. Fonin, U. Rüdiger, C. Laubschat, Phys. Rev. Lett. 100, 107602 (2008)

    Article  ADS  Google Scholar 

  44. M. Zarea, N. Sandler, Phys. Rev. B 79, 165442 (2009)

    Article  ADS  Google Scholar 

  45. D. Marchenko, A. Varykhalov, M.R. Scholz, G. Bihlmayer, E.I. Rashba, A. Rybkin, A.M. Shikin, O. Rader, Nat. Commun. 3, 1232 (2012)

    Article  ADS  Google Scholar 

  46. L. Chico, L.X. Benedict, S.G. Louie, M.L. Cohen, Phys. Rev. B 54, 2600 (1996)

    Article  ADS  Google Scholar 

  47. M. Yuchen, P.O. Lehtinen, A.S. Foster, R.M. Nieminen, New J. Phys. 6, 68 (2004)

    Article  Google Scholar 

  48. T.C. Li, S.-P. Lu, Phys. Rev. B 77, 085408 (2008)

    Article  ADS  Google Scholar 

  49. A.L.C. Pereira, P.A. Schulz, Phys. Rev. B 78, 125402 (2008)

    Article  ADS  Google Scholar 

  50. J.-Y. Yan, P. Zhang, B. Sun, H.-Z. Lu, Z. Wang, S. Duan, X.-G. Zhao, Phys. Rev. B 79, 115403 (2009)

    Article  ADS  Google Scholar 

  51. S. Yuan, H. De Raedt, M.I. Katsnelson, Phys. Rev. B 82, 115448 (2010)

    Article  ADS  Google Scholar 

  52. M. Zarenia, A. Chaves, G.A. Farias, F.M. Peeters, Phys. Rev. B 84, 245403 (2011)

    Article  ADS  Google Scholar 

  53. B.R.K. Nanda, M. Sherafati, Z.S. Popović, S. Satpathy, New J. Phys. 15, 039501 (2013)

    Article  ADS  Google Scholar 

  54. W. Qiu, E. Skafidas, J. Appl. Phys. 114, 073703 (2013)

    Article  ADS  Google Scholar 

  55. L.E.F. Foa Torres, S. Roche, J.-C.-Charlier, Introduction to Graphene-Based Nanomaterials: from Electronic Structure to Quantum Transport (Cambridge University Press, 2014)

  56. V.M. Pereira, J.M.B. Lopes dos Santos, A.H. Castro Neto, Phys. Rev. B 77, 115109 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboubeh Omidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi, M., Faizabadi, E. Energy spectrum and persistent current in an armchair hexagonal graphene ring in the presence of vacancies, Rashba and Zeeman interactions. Eur. Phys. J. B 88, 30 (2015). https://doi.org/10.1140/epjb/e2014-50607-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50607-1

Keywords

Navigation