Skip to main content
Log in

The influence of the zigzag and armchair leads on quantum transport through the graphene based quantum rings

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The conductivity of a graphene ring with two semi-infinite, armchair and zigzag leads has been investigated. We have performed numerical calculations based on the nearest neighbor tight-binding Hamiltonian and Dirac point approximation. A Non-Equilibrium Green’s Function (NEGF) approach has been employed to calculate the electric current under an applied bias voltage, in this two terminal mesoscopic system. We have studied the effect of the external magnetic field on transport characteristics of this graphene-based quantum ring. Coherent transport features of the system have been studied. It was shown that there is significant distinction between the I–V characteristics (and also the Aharonov-Bohm effect) of the graphene rings depending on the edge structure of the leads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666 (2004)

    Article  Google Scholar 

  2. Booth, T.J., Blake, P., Nair, R.R., Jiang, d., Hill, E.W., Bangert, U., Bleloch, A., Gass, M., Novoselov, K.S., Katsnelson, M.I., Geim, A.K.: Nano Lett. 8, 2442 (2008)

    Article  Google Scholar 

  3. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Science 321, 385 (2008)

    Article  Google Scholar 

  4. Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Science 313, 951 (2006)

    Article  Google Scholar 

  5. Mucha-Kruczyński, M., Tsyplyatyev, O., Grishin, A., McCann, E., Fal’ko, V.I., Bostwick, A., Rotenberg, E.: Phys. Rev. B 77, 195403 (2008)

    Article  Google Scholar 

  6. Zhou, S.Y., Gweon, G.-H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.-H., Guinea, F., Castro Neto, A.H., Lanzara, A.: Nat. Mater. 6, 770 (2007)

    Article  Google Scholar 

  7. Zhou, S.Y., Siegel, D.A., Fedorov, A.V., El Gabaly, F., Schmid, A.K., Castro Neto, A.H., Lee, D.-H., Lanzara, A.: Nat. Mater. 7, 259 (2008)

    Article  Google Scholar 

  8. Peres, N.M.R., Rodrigues, J.N.B., Stauber, T., Lopes dos Santos, J.M.B.: J. Phys. Condens. Matter 21, 344202 (2009)

    Article  Google Scholar 

  9. Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., Dai, H.: Phys. Rev. Lett. 100, 206803 (2008)

    Article  Google Scholar 

  10. Aronov, A.G., Lyanda-Geller, Y.B.: Phys. Rev. Lett. 70, 343 (1993)

    Article  Google Scholar 

  11. Popp, M., Frustaglia, D., Richter, K.: Nanotechnology 14, 347 (2003)

    Article  Google Scholar 

  12. Recher, P., Trauzettel, B., Rycerz, A., Blanter, Ya.M., Beenakker, C.W.J., Morpurgo, A.F.: Phys. Rev. B 76, 235404 (2007)

    Article  Google Scholar 

  13. Wurm, J., Wimmer, M., Baranger, H.U., Richter, K.: Semicond. Sci. Technol. 25, 034003 (2010)

    Article  Google Scholar 

  14. Russo, S., Oostinga, J.B., Wehenkel, D., Heersche, H.B., Shams Sobhani, S., Vandersypen, L.M.K., Morpurgo, A.F.: Phys. Rev. B 77, 085413 (2008)

    Article  Google Scholar 

  15. Graf, M., Vogl, P.: Phys. Rev. B 51, 4940 (1995)

    Article  Google Scholar 

  16. Boykin, T.B., Vogl, P.: Phys. Rev. B 65, 035202 (2001)

    Article  Google Scholar 

  17. John, D.L., Pulfrey, D.L.: Phys. Status Solidi B 243(2), 442–448 (2006)

    Article  Google Scholar 

  18. Lopéz Sancho, M.P., Lopéz Sancho, J.M., Rubio, J.: J. Phys. F, Met. Phys. 15, 851 (1985)

    Article  Google Scholar 

  19. Keldysh, L.V.: Sov. Phys. JETP 20, 1018 (1965)

    MathSciNet  Google Scholar 

  20. Dubois, S.M.-M., Zanolli, Z., Declerck, X., Charlier, J.-C.: Eur. Phys. J. B 72, 1–24 (2009)

    Article  Google Scholar 

  21. Zeng, H., Leburton, J.-P., Xu, Y., Wei, J.: Nanoscale Res. Lett. 6, 254 (2011)

    Article  Google Scholar 

  22. Szafran, B., Poniedzialek, M.R.: Phys. Rev. B 80, 155334 (2009)

    Article  Google Scholar 

  23. Andriotis, A.N., Richter, E., Menon, M.: Appl. Phys. Lett. 91, 152105 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

This research has been supported by Azarbaijan Shahid Madani University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Phirouznia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahnia, S., Phirouznia, A. The influence of the zigzag and armchair leads on quantum transport through the graphene based quantum rings. J Comput Electron 13, 224–229 (2014). https://doi.org/10.1007/s10825-013-0503-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0503-6

Keywords

Navigation