Skip to main content
Log in

Statistical properties of swarms of self-propelled particles with repulsions across the order-disorder transition

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study dynamic self-organisation and order-disorder transitions in a two-dimensional system of self-propelled particles. Our model is a variation of the Vicsek model, where particles align the motion to their neighbours but repel each other at short distances. We use computer simulations to measure the orientational order parameter for particle velocities as a function of intensity of internal noise or particle density. We show that in addition to the transition to an ordered state on increasing the particle density, as reported previously, there exists a transition into a disordered phase at the higher densities, which can be attributed to the destructive action of the repulsions. We demonstrate that the transition into the ordered phase is accompanied by the onset of algebraic behaviour of the two-point velocity correlation function and by a non-monotonous variation of the velocity relaxation time. The critical exponent for the decay of the velocity correlation function in the ordered phase depends on particle concentration at low densities but assumes a universal value in more dense systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.K. Parrish, L. Edelstein-Keshet, Science 284, 99 (1999)

    Article  ADS  Google Scholar 

  2. D. Weihs, Nature 241, 290 (1973)

    Article  ADS  Google Scholar 

  3. J.K. Parrish, S.V. Viscido, D. Grunbaum, Biol. Bull. 202, 296 (2002)

    Article  Google Scholar 

  4. S.J. Hall, C.S. Wardle, D.N. MacLennan, Marine Biol. 91, 143 (1986)

    Article  Google Scholar 

  5. E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czirók, T. Vicsek, Nature 368, 46 (1994)

    Article  ADS  Google Scholar 

  6. H. Levine, W. Reynolds, Phys. Rev. Lett. 66, 2400 (1991)

    Article  ADS  Google Scholar 

  7. J.T. Bonner, Proc. Natl. Acad. Sci. USA 95, 9355 (1998)

    Article  ADS  Google Scholar 

  8. R.P. Larkin, B.A. Frase, J. Comp. Psychol. 102, 90 (1988)

    Article  Google Scholar 

  9. T.C. Schneirla, Am. Mus. Novit. 1253, 1 (1944)

    Google Scholar 

  10. A. Czirók, E. Ben-Jacob, I. Cohen, T. Vicsek, Phys. Rev. E 54, 1791 (1996)

    Article  ADS  Google Scholar 

  11. W.J. Rappel, A. Nicol, A. Sarkissian, H. Levine, Phys. Rev. Lett. 83, 1247 (1999)

    Article  ADS  Google Scholar 

  12. G. Beni, J. Wang, “Swarm Intelligence in Cellular Robotic Systems”, in Proceedings of the NATO Advanced Workshop on Robots and Biological Systems Tuscany, 1989

  13. J. Toner, Y. Tu, S. Ramaswami, Ann. Phys. 318, 170 (2005)

    Article  ADS  MATH  Google Scholar 

  14. S. Ramaswami, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)

    Article  ADS  Google Scholar 

  15. P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. 202, 1 (2012)

    Google Scholar 

  16. T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)

    Article  ADS  Google Scholar 

  17. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)

    Article  ADS  Google Scholar 

  18. C. Huepe, M. Aldana, Physica A 387, 2809 (2008)

    Article  ADS  Google Scholar 

  19. H. Grégoire, H. Chaté, Phys. Rev. Lett. 92, 025702 (2004)

    Article  ADS  Google Scholar 

  20. C. Huepe, M. Aldana, Phys. Rev. Lett. 92, 168701 (2004)

    Article  ADS  Google Scholar 

  21. H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Phys. Rev. E 77, 046113 (2008)

    Article  ADS  Google Scholar 

  22. H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, F. Raynaud, Eur. Phys. J. B 64, 451 (2008)

    Article  ADS  Google Scholar 

  23. G. Baglietto, E.V. Albano, Phys. Rev. E 78, 21125 (2008)

    Article  ADS  Google Scholar 

  24. G. Baglietto, E.V. Albano, Phys. Rev. E 80, 050103(R) (2009)

    Article  ADS  Google Scholar 

  25. I.D. Couzin, J. Krause, R. James, G.D. Ruxton, N.R. Franks, J. Theor. Biol. 218, 1 (2002)

    Article  MathSciNet  Google Scholar 

  26. B.M. Tian, H.X. Yang, W. Li, W.X. Wang, B.H. Wang, T. Zhou, Phys. Rev. E 79, 052102 (2009)

    Article  ADS  Google Scholar 

  27. J. Toner, Y. Tu, Phys. Rev. Lett. 75, 4326 (1995)

    Article  ADS  Google Scholar 

  28. J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Czirók, H.E. Stanley, T. Vicsek, J. Phys. A 30, 1375 (1997)

    Article  ADS  Google Scholar 

  30. A. Czirók, A.L. Barabasi, T. Vicsek, Phys. Rev. Lett. 82, 209 (1999)

    Article  ADS  Google Scholar 

  31. F. Peruani, J. Starruß, V. Jakovlevic, L. Søgaard-Andersen, A. Deutsch, M. Bär, Phys. Rev. Lett. 108, 098102 (2012)

    Article  ADS  Google Scholar 

  32. J. Deseigne, O. Dauchot, H. Chaté, Phys. Rev. Lett. 105, 098001 (2010)

    Article  ADS  Google Scholar 

  33. M. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R. Aditi Simha, arXiv:1207.2929[cond-mat.soft] (2012)

  34. I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin, Nature 433, 513 (2005)

    Article  ADS  Google Scholar 

  35. M. Romenskyy, V. Lobaskin, “Dynamic phase transition in a system of self-propelled particles”, in Proceedings of the XIII Int. Conf. on the Simulation and Synthesis of Living Systems. Artificial Life 13, edited by C. Adami, D.M. Bryson, C. Ofria, R.T. Pennock, Michigan State University (The MIT Press, Cambridge, Massachusetts, 2012), pp. 574–575

  36. C.K. Hemelrijk, H. Hildenbrandt, Ethology 114, 245–254 (2008)

    Article  Google Scholar 

  37. E. Hensor, I. Couzin, R. James, J. Krause, OIKOS 110, 344 (2005)

    Article  Google Scholar 

  38. H. Dong, Y. Zhao, J. Wu, S. Gao, Physica A 391, 2145−2153 (2012)

    Article  ADS  Google Scholar 

  39. R. Freeman, D. Biro, J. Navigation 62, 33 (2009)

    Article  ADS  Google Scholar 

  40. M. Nagy, I. Daruka, T. Vicsek, Physica A 373, 445 (2007)

    Article  ADS  Google Scholar 

  41. K. Binder, Z. Phys. B 43, 119 (1981)

    Article  ADS  Google Scholar 

  42. M. Ballerini et al., Proc. Natl. Acad. Sci. USA 105, 1232 (2008)

    Article  ADS  Google Scholar 

  43. F. Ginelli, H. Chaté, Phys. Rev. Lett. 105, 168103 (2010)

    Article  ADS  Google Scholar 

  44. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  45. J.M. Kosterlitz, J. Phys. C 7, 1046 (1974)

    Article  ADS  Google Scholar 

  46. M.E. Fisher, Rep. Mod. Phys. 46, 597 (1974)

    Article  ADS  Google Scholar 

  47. J.V. Jose, L.P. Kadanoff, S. Kirkpatrick, D.R. Nelson, Phys. Rev. B 16, 1217 (1977)

    Article  ADS  Google Scholar 

  48. D. Frenkel, R. Eppenga, Phys. Rev. A 31, 1776 (1985)

    Article  ADS  Google Scholar 

  49. N. Moussa, I. Tarras, M. Mazroui, Y. Boughaleb, Int. J. Mod. Phys. C 22, 661 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Lobaskin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romenskyy, M., Lobaskin, V. Statistical properties of swarms of self-propelled particles with repulsions across the order-disorder transition. Eur. Phys. J. B 86, 91 (2013). https://doi.org/10.1140/epjb/e2013-30821-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30821-1

Keywords

Navigation