Skip to main content
Log in

Orientational hysteresis in swarms of active particles in external field

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Structure and ordering in swarms of active particles have much in common with condensed matter systems like magnets or liquid crystals. A number of important characteristics of such materials can be obtained via dynamic tests such as hysteresis. In this work, we show that dynamic hysteresis can be observed also in swarms of active particles and possesses similar properties to the counterparts in magnetic materials. To study the swarm dynamics, we use computer simulations of the active Brownian particle model with dissipative interactions. The swarm is confined to a narrow linear channel and the one-dimensional polar order parameter is measured. In an oscillating external field, the order parameter demonstrates dynamic hysteresis with the shape of the loop and its area varying with the amplitude and frequency of the applied field, swarm density and the noise intensity. We measure the scaling exponents for the hysteresis loop area, which can be associated with the controllability of the swarm. Although the exponents are non-universal and depend on the system’s parameters, their limiting values can be predicted using a generic model of dynamic hysteresis. We also discuss similarities and differences between the swarm ordering dynamics and two-dimensional magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Krasnosel’skii, A.V. Pokrovskii, Systems with hysteresis (Springer, 1989)

  2. I.F. Lyuksyutov, T. Nattermann, V. Pokrovsky, Phys. Rev. B 59, 4260 (1999)

    Article  ADS  Google Scholar 

  3. H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Phys. Rev. E 77, 046113 (2008)

    Article  ADS  Google Scholar 

  4. I.D. Couzin, J. Krause, R. James, G.D. Ruxton, N.R. Franks, J. Theor. Biol. 218, 1 (2002)

    Article  MathSciNet  Google Scholar 

  5. T. Ihle, Phys. Rev. E 88, 040303 (2013)

    Article  ADS  Google Scholar 

  6. B.K. Chakrabarti, M. Acharyya, Rev. Mod. Phys. 71, 847 (1999)

    Article  ADS  Google Scholar 

  7. P. Reimann, R. Kawai, C. Van den Broeck, P. Hänggi, Europhys. Lett. 45, 545 (1999)

    Article  ADS  Google Scholar 

  8. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)

    Article  ADS  Google Scholar 

  9. T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)

    Article  ADS  Google Scholar 

  10. A. Czirók, A.L. Barabasi, T. Vicsek, Phys. Rev. Lett. 82, 209 (1999)

    Article  ADS  Google Scholar 

  11. J. Toner, Y. Tu, Phys. Rev. Lett. 75, 4326 (1995)

    Article  ADS  Google Scholar 

  12. J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Toner, Y. Tu, S. Ramaswami, Ann. Phys. 318, 170 (2005)

    Article  ADS  Google Scholar 

  14. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)

    Article  ADS  Google Scholar 

  15. G. Baglietto, E.V. Albano, Phys. Rev. E 78, 21125 (2008)

    Article  ADS  Google Scholar 

  16. M. Romenskyy, V. Lobaskin, Eur. Phys. J. B 86, 91 (2013)

    Article  ADS  Google Scholar 

  17. A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, M. Viale, Proc. Natl. Acad. Sci. USA 107(26), 11865 (2010)

    Article  ADS  Google Scholar 

  18. A.P. Solon, J. Tailleur, Phys . Rev. Lett. 111, 078101 (2013)

    Article  ADS  Google Scholar 

  19. W. Ebeling, F. Schweitzer, B. Tilch, Biosystems 49, 17 (1999)

    Article  Google Scholar 

  20. W. Ebeling, U. Erdmann, J. Dunkel, M. Jenssen, J. Stat. Phys. 101, 443 (2000)

    Article  ADS  Google Scholar 

  21. V. Lobaskin, M. Romenskyy, Phys. Rev. E 87, 052135 (2013)

    Article  ADS  Google Scholar 

  22. M. Romensky, D. Scholz, V. Lobaskin, J. R. Soc. Interface 12, 20150015 (2015)

    Article  Google Scholar 

  23. P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. Special Topics 202, 1 (2012)

    Article  ADS  Google Scholar 

  24. P. Español, Phys. Rev. E 52, 1734 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  25. K. Binder, Z. Phys. B Condens. Matter 43, 119 (1981)

    Article  ADS  Google Scholar 

  26. H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, F. Raynaud, Eur. Phys. J. B 64, 451 (2008)

    Article  ADS  Google Scholar 

  27. L. Verlet, Phys. Rev. 159, 98 (1967)

    Article  ADS  Google Scholar 

  28. M. Romensky, V. Lobaskin, T. Ihle, Phys. Rev. E 90, 063315 (2014)

    Article  ADS  Google Scholar 

  29. I.D. Mayergoyz, Mathematical models of Hysteresis (Spinger Verlag, New York, 1991)

  30. Z. Huang, F. Zhang, Z. Chen, Y. Du, Eur. Phys. J. B 44, 423 (2005)

    Article  ADS  Google Scholar 

  31. E. Vatansever, U. Akinci, Y. Yüksel, H. Polat, J. Magn. Magn. Mater. 329, 14 (2013)

    Article  ADS  Google Scholar 

  32. G.H. Goldsztein, F. Broner, S.H. Strogatz, SIAM J. Appl. Math. 57, 1163 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Romensky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romensky, M., Lobaskin, V. Orientational hysteresis in swarms of active particles in external field. Eur. Phys. J. Spec. Top. 224, 1359–1376 (2015). https://doi.org/10.1140/epjst/e2015-02464-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02464-1

Keywords

Navigation