Skip to main content
Log in

Equilibrium gels of trivalent DNA-nanostars: Effect of the ionic strength on the dynamics

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Self-assembling DNA-nanostars are ideal candidates to explore equilibrium gelation in systems composed of limited-valence particles. We present here a light scattering study of the dynamics in a trivalent DNA-nanostars equilibrium gel and of its dependence on ionic strength and concentration. Reversible bonds between different nanostars, whose formation is sensitively dependent on temperature, concentration and ionic strength, are provided by complementary DNA sticky ends. We find that the decay of the density correlations is described by a two-step relaxation process characterised by: i) a slow time scale that varies over nearly four orders of magnitude in a temperature window of less than 30 degrees; ii) an increase of the amplitude (the so-called non-ergodicity factor) of the slow relaxation. The slow process follows an Arrhenius law with temperature. We observe that the activation enthalpy does not depend on the ionic strength and that the dependence of the relaxation time on the ionic strength can be rationalized in terms of the free-energy cost of forming a sticky-end duplex. Finally, we observe that dynamics is insensitive to nanostar concentration, in full agreement with the predicted behaviour in equilibrium gels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richard A.L. Jones, Soft Condensed Matter, Oxford Master Series in Condensed Matter Physics (Oxford University Press, 2002).

  2. P.N. Pusey, W. van Megen, Nature 320, 340 (1986).

    Article  ADS  Google Scholar 

  3. V.J. Anderson, H.N. Lekkerkerker, Nature 416, 811 (2002).

    Article  ADS  Google Scholar 

  4. E. Zaccarelli, J. Phys.: Condens. Matter 19, 323101 (2007).

    Google Scholar 

  5. A. van Blaaderen, Nature 439, 545 (2006).

    Article  ADS  Google Scholar 

  6. S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007).

    Article  Google Scholar 

  7. L. Rossi, S. Sacanna, W.T. Irvine, P.M. Chaikin, D.J. Pine, A.P. Philipse, Soft Matter 7, 4139 (2011).

    Article  ADS  Google Scholar 

  8. Q. Chen, S.C. Bae, S. Granick, Nature 469, 381 (2011).

    Article  ADS  Google Scholar 

  9. V.N. Manoharan, M.T. Elsesser, D.J. Pine, Science 301, 483 (2003).

    Article  ADS  Google Scholar 

  10. G. Zhang, D. Wang, H. Möhwald, Angew. Chem. Int. Ed. 44, 7767 (2005).

    Article  Google Scholar 

  11. Y.S. Cho, G.R. Yi, J.M. Lim, S.H. Kim, V.N. Manoharan, D.J. Pine, S.M. Yang, J. Am. Chem. Soc. 127, 15968 (2005).

    Article  Google Scholar 

  12. S. Biffi, R. Cerbino, F. Bomboi, E.M. Paraboschi, R. Asselta, F. Sciortino, T. Bellini, Proc. Natl. Acad. Sci. U.S.A. 110, 15633 (2013).

    Article  ADS  Google Scholar 

  13. T. Bellini, G. Zanchetta, T. Fraccia, R. Cerbino, B. Tsai, G.P. Smith, M.J. Moran, D.M. Walba, N.A. Clark, Proc. Natl. Acad. Sci. U.S.A. 109, 1110 (2012).

    Article  ADS  Google Scholar 

  14. G. Zanchetta, F. Giavazzi, M. Nakata, M. Buscaglia, R. Cerbino, N.A. Clark, T. Bellini, Proc. Natl. Acad. Sci. U.S.A. 107, 17497 (2010).

    Article  Google Scholar 

  15. G. Zanchetta, M. Nakata, M. Buscaglia, N.A. Clark, T. Bellini, J. Phys.: Condens. Matter 20, 494214 (2008).

    Google Scholar 

  16. N.C. Seeman, J. Theor. Biol. 99, 237 (1982).

    Article  Google Scholar 

  17. N.C. Seeman, Annu. Rev. Biophys. Biomol. Struct. 27, 225 (1998).

    Article  Google Scholar 

  18. N.C. Seeman, Nature 421, 427 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Condon, Nat. Rev. Genet. 7, 565 (2006).

    Article  Google Scholar 

  20. N.C. Seeman, Annu. Rev. Biochem. 79, 65 (2010).

    Article  Google Scholar 

  21. Y.H. Roh, R.C.H. Ruiz, S. Peng, J.B. Lee, D. Luo, Chem. Soc. Rev. 40, 5730 (2011).

    Article  Google Scholar 

  22. R. Cerbino, G. Zanchetta, T. Bellini, Top. Curr. Chem. 318, 225 (2012).

    Google Scholar 

  23. E. Zaccarelli, S. Buldyrev, E. La Nave, A. Moreno, I. Saika-Voivod, F. Sciortino, P. Tartaglia, Phys. Rev. Lett. 94, 218301 (2005).

    Article  ADS  Google Scholar 

  24. E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006).

    Article  ADS  Google Scholar 

  25. L. Rovigatti, F. Bomboi, F. Sciortino, J. Chem. Phys. 140, 154903 (2014).

    Article  ADS  Google Scholar 

  26. S. Biffi, R. Cerbino, G. Nava, F. Bomboi, F. Sciortino, T. Bellini, Soft Matter 11, 3132 (2015).

    Article  ADS  Google Scholar 

  27. B. Ruzicka, E. Zaccarelli, L. Zulian, R. Angelini, M. Sztucki, A. Moussaid, T. Narayanan, F. Sciortino, Nat. Mater. 10, 56 (2011).

    Article  ADS  Google Scholar 

  28. F. Manyanga, M.T. Horne, G.P. Brewood, D.J. Fish, R. Dickman, A.S. Benight, J. Phys. Chem. B 113, 2556 (2009).

    Article  Google Scholar 

  29. R. Owczarzy, Y. You, B.G. Moreira, J.A. Manthey, L. Huang, M.A. Behlke, J.A. Walder, Biochemistry 43, 3537 (2004).

    Article  Google Scholar 

  30. P. Yakovchuk, E. Protozanova, M.D. Frank-Kamenetskii, Nucl. Acids Res. 34, 564 (2006).

    Article  Google Scholar 

  31. Y. Liu, R.B. Pandey, Phys. Rev. B 55, 8257 (1997).

    Article  ADS  Google Scholar 

  32. E. Del Gado, A. Fierro, L. de Arcangelis, A. Coniglio, Europhys. Lett. 63, 1 (2003).

    Article  ADS  Google Scholar 

  33. E. Del Gado, A. Fierro, L. de Arcangelis, A. Coniglio, Phys. Rev. E 69, 051103 (2004).

    Article  ADS  Google Scholar 

  34. I. Saika-Voivod, E. Zaccarelli, F. Sciortino, S. Buldyrev, P. Tartaglia, Phys. Rev. E 70, 041401 (2004).

    Article  ADS  Google Scholar 

  35. M. Shibayama, Macromol. Chem. Phys. 199, 1 (1998).

    Article  Google Scholar 

  36. P. Barretta, F. Bordi, C. Rinaldi, G. Paradossi, J. Phys. Chem. B 104, 11019 (2000).

    Article  Google Scholar 

  37. F. Bordi, G. Paradossi, C. Rinaldi, B. Ruzicka, Physica A 304, 119 (2002).

    Article  ADS  Google Scholar 

  38. K. Binder, W. Kob, Glassy Materials And Disordered Solids: An Introduction to Their Statistical Mechanics (World Scientific Publishing Company, 2005), ISBN 9789812565105.

  39. K. Broderix, H. Löwe, P. Müller, A. Zippelius, Phys. Rev. E 63, 011510 (2001).

    Article  ADS  Google Scholar 

  40. J. Colombo, A. Widmer-Cooper, E. Del Gado, Phys. Rev. Lett. 110, 198301 (2013).

    Article  ADS  Google Scholar 

  41. E. Michel, M. Filali, R. Aznar, G. Porte, J. Appell, Langmuir 16, 8702 (2000).

    Article  Google Scholar 

  42. J. SantaLucia jr., Proc. Natl. Acad. Sci. U.S.A. 95, 1460 (1998).

    Article  ADS  Google Scholar 

  43. J. SantaLucia jr., D. Hicks, Annu. Rev. Biophys. Biomol. Struct. 33, 415 (2004).

    Article  Google Scholar 

  44. L. Di Michele, B.M. Mognetti, T. Yanagishima, P. Varilly, Z. Ruff, D. Frenkel, E. Eiser, J. Am. Chem. Soc. 136, 6538 (2014).

    Article  Google Scholar 

  45. F. Smallenburg, F. Sciortino, Nat. Phys. 9, 554 (2013).

    Article  Google Scholar 

  46. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory: A Mode-Coupling Theory, Vol. 143 (Oxford University Press, 2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Bomboi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bomboi, F., Biffi, S., Cerbino, R. et al. Equilibrium gels of trivalent DNA-nanostars: Effect of the ionic strength on the dynamics. Eur. Phys. J. E 38, 64 (2015). https://doi.org/10.1140/epje/i2015-15064-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15064-9

Keywords

Navigation