Skip to main content

Advertisement

Log in

Transient dynamics of a 2D granular pile

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We investigate by means of Contact Dynamics simulations the transient dynamics of a 2D granular pile set into motion by applying shear velocity during a short time interval to all particles. The spreading dynamics is directly controlled by the input energy whereas in recent studies of column collapse the dynamics scales with the initial potential energy of the column. As in column collapse, we observe a power-law dependence of the runout distance with respect to the input energy with nontrivial exponents. This suggests that the power-law behavior is a generic feature of granular dynamics, and the values of the exponents reflect the distribution of kinetic energy inside the material. We observe two regimes with different values of the exponents: the low-energy regime reflects the destabilization of the pile by the impact with a runout time independent of the input energy whereas the high-energy regime is governed by the input energy. We show that the evolution of the pile in the high-energy regime can be described by a characteristic decay time and the available energy after the pile is destabilized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.B. Savage, J. Fluid Mech. 92, 53 (1979).

    Article  ADS  MATH  Google Scholar 

  2. C. Campbell, Ann. Rev. Fluid Mech. 22, 57 (1990).

    Article  ADS  Google Scholar 

  3. GDR-MiDi, Eur. Phys. J. E 14, 341 (2004).

    Article  Google Scholar 

  4. D.L. Henann, K. Kamrin, Proc. Natl. Acad. Sci. U.S.A. 110, 6730 (2013).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. A. Daerr, S. Douady, Nature 399, 241 (1999).

    Article  ADS  Google Scholar 

  6. M. Pailha, M. Nicolas, O. Pouliquen, Phys. Fluids 20, 111701 (2008).

    Article  ADS  Google Scholar 

  7. M.J. Woodhouse, A.R. Thornton, C.G. Johnson, B.P. Kokelaar, J.M.N.T. Gray, J. Fluid Mech. 709, 543 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. O. Hungr, S.G. Evans, M.J. Bovis, J.N. Hutchinson, Environ. Engin. Geosci. 7, 221 (2001).

    Article  Google Scholar 

  9. D.G. Masson, C.B. Harbitz, R.B. Wynn, G. Pedersen, F. Lovholt, Philos. Trans. R. Soc. A 364, 2009 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  10. K. Hewitt, Am. Sci. 98, 410 (2010).

    Google Scholar 

  11. D. Keeper, Geol. Soc. Am. Bull. 95, 406 (1984).

    Article  ADS  Google Scholar 

  12. M.A. Hampton, H.J. Lee, J. Locat, Rev. Geophys. 34, 33 (1996).

    Article  ADS  Google Scholar 

  13. K. Hutter, T. Koch, C. Pluss, S.B. Savage, Acta Mech. 109, 127 (1995).

    Article  MathSciNet  Google Scholar 

  14. V. Buchholtz, T. Pschel, J. Stat. Phys. 84, 1373 (1996).

    Article  ADS  Google Scholar 

  15. R.M. Iverson, Rev. Geophys. 35, 245 (1997).

    Article  ADS  Google Scholar 

  16. F. Legros, Engin. Geol. 63, 301 (2002).

    Article  Google Scholar 

  17. G. Lube, H.E. Huppert, R.S.J. Sparks, M.A. Hallworth, J. Fluid Mech. 508, 175 (2004).

    Article  ADS  MATH  Google Scholar 

  18. E. Lajeunesse, A. Mangeney-Castelnau, J.P. Vilotte, Phys. Fluids 16, 2371 (2004).

    Article  ADS  Google Scholar 

  19. S. Siavoshi, A. Kudrolli, Phys. Rev. E 71, 051302 (2005).

    Article  ADS  Google Scholar 

  20. N.J. Balmforth, R.R. Kerswell, J. Fluid Mech. 538, 399 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. E. Lajeunesse, J.B. Monnier, G.M. Homsy, Phys. Fluids 17, 103302 (2005).

    Article  ADS  Google Scholar 

  22. L.E. Silbert, J.W. Landry, G.S. Grest, Phys. Fluids 15, 1 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  23. N. Jain, J.M. Ottino, R.M. Lueptow, J. Fluid Mech. 508, 23 (2004).

    Article  ADS  MATH  Google Scholar 

  24. R. Zenit, Phys. Fluids 17, 031703 (2005).

    Article  ADS  Google Scholar 

  25. L. Staron, E.J. Hinch, J. Fluid Mech. 545, 1 (2005).

    Article  ADS  MATH  Google Scholar 

  26. L. Staron, Geophys. J. Int. 172, 455 (2008).

    Article  ADS  Google Scholar 

  27. L. Staron, E. Lajeunesse, Geophys. Res. Lett. 36, L12402 (2009).

    Article  ADS  Google Scholar 

  28. V. Topin, Y. Monerie, F. Perales, F. Radjai, Phys. Rev. Lett. 109, 188001 (2012).

    Article  ADS  Google Scholar 

  29. P. Mutabaruka, J.-Y. Delenne, K. Soga, F. Radjai, Phys. Rev. E 89, 052203 (2014).

    Article  ADS  Google Scholar 

  30. F. Radjai, S. Roux, Phys. Rev. Lett. 89, 064302 (2002).

    Article  ADS  Google Scholar 

  31. J.J. Moreau, New computation methods in granular dynamics, in Powders & Grains 93 (A. A. Balkema, Rotterdam, 1993) p. 227.

  32. M. Jean, Comput. Methods Appl. Mech. Engin. 177, 235 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. F. Radjai, V. Richefeu, Mech. Mater. 41, 715 (2009).

    Article  Google Scholar 

  34. F. Radjai, F. Dubois (Editors), Discrete-element Modeling of Granular Materials (Iste-Wiley, London, 2011).

  35. N. Estrada, A. Taboada, F. Radjaï, Phys. Rev. E 78, 021301 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Mutabaruka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutabaruka, P., Kumar, K., Soga, K. et al. Transient dynamics of a 2D granular pile. Eur. Phys. J. E 38, 47 (2015). https://doi.org/10.1140/epje/i2015-15047-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15047-x

Keywords

Navigation