Skip to main content

Advertisement

Log in

The Static Modes: An alternative approach for the treatment of macro- and bio-molecular induced-fit flexibility

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We present a new competitive method for the atomic scale treatment of macromolecular flexibility called Static Mode method. This method is based on the “induced-fit” concept, i.e. it maps the intrinsic deformations of a macromolecule subject to diverse external excitations. The algorithm makes it possible to obtain a set of deformations, each one corresponding to a specific interaction on a specific molecular site, in terms of force constants contained in the energy model. In this frame, the docking problem can be expressed in terms of interaction sites between the two molecules, the molecular deformations being extracted from the pre-calculated Static Modes of each molecule. Some preliminary basic examples aimed at illustrating potential applications where macro- or bio-molecular flexibility is of key importance are given: flexibility inducing conformational changes in the case of furanose ring and flexibility for the characterization, including allostery, of poly(N-isopropylacrylamide)(P-NIPAM) active sites. We also discuss how this procedure allows “induced-fit” flexible molecular docking, beyond state-of-the-art semi-rigid methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Wolfson, M. Shatsky, D. Schneidman-Duhovny, O. Dror, A. Shulman-Peleg, B. Ma, R. Nussinov, Curr. Protein Pept. Sci. 6, 171 (2005).

    Google Scholar 

  2. A.M.J.J. Bonvin, Curr. Opin. Struct. Biol. 16, 194 (2006).

    Google Scholar 

  3. N. Brooijmans, I.D. Kuntz, Annu. Rev. Biophys. Biomol. Struct. 32, 335 (2003).

    Google Scholar 

  4. E. Fischer, Ber. Deutsch. Chem. Ges. 27, 2985 (1894).

    Google Scholar 

  5. D. Koshland, Proc. Natl. Acad. Sci. U.S.A. 44, 98 (1958).

    Google Scholar 

  6. D. Koshland, Science 142, 1533 (1963).

  7. D. Koshland, Angew. Chem. Int. Ed. Engl. 33, 2375 (1994).

    Google Scholar 

  8. W. Jorgensen, Science 254, 954 (1991).

  9. F. Tama, Y.-H. Sanejouand, Protein Eng. 14, 14, 1 (2001).

    Google Scholar 

  10. K. Hinsen, Proteins: Struct. Funct. Genet. 33, 417 (1998).

  11. D.A. Case, T.A. Darden, I.T.E. Cheatham, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, K.M. Merz, B. Wang, D.A. Pearlman, M. Crowley, S. Brozell, V. Tsui, H. Gohlke, J. Mongan, V. Hornak, G. Cui, P. Beroza, C. Schafmeister, J.W. Caldwell, W.S. Ross, P.A. Kollman, AMBER8, University of California, San Francisco (2004).

  12. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN03 ReV C.01, Gaussian, Inc.: Pittsburgh (2003).

  13. M. Levitt, A. Warshel, J. Am. Chem. Soc. 100, 2607 (1978).

    Google Scholar 

  14. V.N. Bartenev, N.G. Kamenevaand, A.A. Lipanov, Acta Crystallogr. B 43, 275 (1987).

    Google Scholar 

  15. K. Arora, T. Schlick, Chem. Phys. Lett. 378, 1 (2003).

    Google Scholar 

  16. G.A. Meints, T. Karlsson, G.P. Drobny, J. Am. Chem. Soc. 123, 10030 (2001).

    Google Scholar 

  17. C. Altona, M. Sundaralingam, J. Am. Chem. Soc. 94, 8205 (1972).

  18. S. Rao, E. Westhof, M. Sundaralingam, Acta Crystallogr. A 37, 421 (1981).

    Google Scholar 

  19. W. Saenger, Principles of Nucleic Acid Structure (Springer-Verlag, 1984).

  20. H.P.M. de Leeuw, C.A.G. Haasnoot, C. Altona, Isr. J. Chem. 20, 108 (1980).

    Google Scholar 

  21. M. Heskins, J.E. Guillet, J. Macromol. Sci. Chem. A 2, 1441 (1968).

  22. H.G. Schild, Prog. Polym. Sci. 17, 163 (1992).

    Google Scholar 

  23. A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Google Scholar 

  24. A. Estève, A. Bail, G. Landa, A. Dkhissi, M. Brut, M. Djafari Rouhani, J. Sudor, A.M. Gue, Chem. Phys. 340, 12 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brut, M., Estève, A., Landa, G. et al. The Static Modes: An alternative approach for the treatment of macro- and bio-molecular induced-fit flexibility. Eur. Phys. J. E 28, 17–25 (2009). https://doi.org/10.1140/epje/i2008-10397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10397-0

PACS

Navigation