Skip to main content
Log in

Magnetic imaging with an ensemble of nitrogen-vacancy centers in diamond

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The nitrogen-vacancy (NV) color center in diamond is an atom-like system in the solid-state which specific spin properties can be efficiently used as a sensitive magnetic sensor. An external magnetic field induces Zeeman shifts of the NV center levels which can be measured using optically detected magnetic resonance (ODMR). In this work, we quantitatively map the vectorial structure of the magnetic field produced by a sample close to the surface of a CVD diamond hosting a thin layer of NV centers. The magnetic field reconstruction is based on a maximum-likelihood technique which exploits the response of the four intrinsic orientations of the NV center inside the diamond lattice. The sensitivity associated to a 1 μm2 area of the doped layer, equivalent to a sensor consisting of approximately 104 NV centers, is of the order of 2 μT/√Hz. The spatial resolution of the imaging device is 480 nm, limited by the numerical aperture of the optical microscope which is used to collect the photoluminescence of the NV layer. The effectiveness of the method is illustrated by the accurate reconstruction of the magnetic field created by a DC current inside a copper wire deposited on the diamond sample.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Budker, M. Romalis, Nat. Phys. 3, 227 (2007)

    Article  Google Scholar 

  2. R. McDermott, S.K. Lee, B.T. Haken, A.H. Trabesinger, A. Pines, J. Clarke, Proc. Natl. Acad. Sci. USA 101, 7857 (2004)

    Article  ADS  Google Scholar 

  3. D. Rugar, R. Budakian, H.J. Mamin, B.W. Chui, Nature 430, 329 (2004)

    Article  ADS  Google Scholar 

  4. C.L. Degen, M. Poggio, H.J. Mamin, C.T. Rettner, D. Rugar, Proc. Natl. Acad. Sci. 106, 1313 (2009)

    Article  ADS  Google Scholar 

  5. M.P. Ledbetter, I.M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D.J. Michalak, S. Xu, A. Pines, Proc. Natl. Acad. Sci. 105, 2286 (2008)

    Article  ADS  Google Scholar 

  6. S. Xu, V.V. Yashchuk, M.H. Donaldson, S.M. Rochester, D. Budker, A. Pines, Proc. Natl. Acad. Sci. 103, 12668 (2006)

    Article  ADS  Google Scholar 

  7. M. Vengalattore, J.M. Higbie, S.R. Leslie, J. Guzman, L.E. Sadler, D.M. Stamper-Kurn, Phys. Rev. Lett. 98, 200801 (2007)

    Article  ADS  Google Scholar 

  8. L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, V. Jacques, Rep. Prog. Phys. 77, 056503 (2014)

    Article  ADS  Google Scholar 

  9. R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Ann. Rev. Phys. Chem. 65, 83 (2014)

    Article  ADS  Google Scholar 

  10. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Von Borczyskowski, Science 276, 2012 (1997)

    Article  Google Scholar 

  11. S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, A. Zaitsev, New J. Phys. 13, 035024 (2011)

    Article  ADS  Google Scholar 

  12. J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, Nat. Phys. 4, 810 (2008)

    Article  Google Scholar 

  13. P. Maletinsky, S. Hong, M.S. Grinolds, B. Hausmann, M.D. Lukin, R.L. Walsworth, M. Loncar, A. Yacoby, Nat. Nanotechnol. 7, 320 (2012)

    Article  ADS  Google Scholar 

  14. M.S. Grinolds, S. Hong, P. Maletinsky, L. Luan, M.D. Lukin, R.L. Walsworth, A. Yacoby, Nat. Phys. 9, 215 (2013)

    Article  Google Scholar 

  15. L. Rondin, J.-P. Tetienne, P. Spinicelli, C. Dal Savio, K. Karrai, G. Dantelle, A. Thiaville, S. Rohart, J.-F. Roch, V. Jacques, Appl. Phys. Lett. 100, 153118 (2012)

    Article  ADS  Google Scholar 

  16. J.-P. Tetienne, T. Hingant, J.-V. Kim, L. Herrera Diez, J.-P. Adam, K. Garcia, J.-F. Roch, S. Rohart, A. Thiaville, D. Ravelosona, V. Jacques, Science 344, 1366 (2014)

    Article  ADS  Google Scholar 

  17. S. Steinert, F. Dolde, P. Neumann, A. Aird, B. Naydenov, G. Balasubramanian, F. Jelezko, J. Wrachtrup, Rev. Sci. Instrum. 81, 043705 (2010)

    Article  ADS  Google Scholar 

  18. L.M. Pham, D. Le Sage, P.L. Stanwix, T.K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P.R. Hemmer, M.D. Lukin, H. Park, A. Yacoby, R.L. Walsworth, New J. Phys. 13, 045021 (2011)

    Article  ADS  Google Scholar 

  19. D. Le Sage, K. Arai, D.R. Glenn, S.J. DeVience, L.M. Pham, L. Rahn-Lee, M.D. Lukin, A. Yacoby, A. Komeili, R.L. Walsworth, Nature 496, 486 (2013)

    Article  ADS  Google Scholar 

  20. N. Manson, J. Harrison, M. Sellars, Phys. Rev. B 74, 104303 (2006)

    Article  ADS  Google Scholar 

  21. J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, V. Jacques, New J. Phys. 14, 103033 (2012)

    Article  Google Scholar 

  22. A. Tallaire, A.T. Collins, D. Charles, J. Achard, R. Sussmann, A. Gicquel, M.E. Newton, A.M. Edmonds, R.J. Cruddace, Diam. Relat. Mater. 15, 1700 (2006)

    Article  ADS  Google Scholar 

  23. Almax easyLab bvba, http://www.almax-easylab.com

  24. S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, J. Meijer, New J. Phys. 12, 065017 (2010)

    Article  ADS  Google Scholar 

  25. J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, J. Wrachtrup, Appl. Phys. Lett. 87, 261909 (2005)

    Article  ADS  Google Scholar 

  26. S. Prawer, K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, J.L. Peng, Chem. Phys. Lett. 332, 93 (2000)

    Article  ADS  Google Scholar 

  27. K. Levenberg, Quarterly Appl. Math. 2, 164 (1944)

    MathSciNet  Google Scholar 

  28. D.W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963)

    Article  MathSciNet  Google Scholar 

  29. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V. Gurudev Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, M.D. Lukin, Nature 455, 644 (2008)

    Article  ADS  Google Scholar 

  30. R.S. Schoenfeld, W. Harneit, Phys. Rev. Lett. 106, 030802 (2011)

    Article  ADS  Google Scholar 

  31. M. Lesik, J.-P. Tetienne, A. Tallaire, J. Achard, V. Mille, A. Gicquel, J.-F. Roch, V. Jacques, Appl. Phys. Lett. 104, 113107 (2014)

    Article  ADS  Google Scholar 

  32. J. Michl, T. Teraji, S. Zaiser, I. Jakobi, G. Waldherr, F. Dolde, P. Neumann, M.W. Doherty, N.B. Manson, J. Isoya, J. Wrachtrup, Appl. Phys. Lett. 104, 102407 (2014)

    Article  ADS  Google Scholar 

  33. T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, N. Tokuda, M. Hatano, Y. Sakagawa, H. Morishita, T. Tashima, S. Miwa, Y. Suzuki, N. Mizuochi, Appl. Phys. Express 7, 055201 (2014)

    Article  ADS  Google Scholar 

  34. K.-M.C. Fu, C. Santori, P.E. Barclay, R.G. Beausoleil, Appl. Phys. Lett. 96, 121907 (2010)

    Article  ADS  Google Scholar 

  35. A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, V. Jacques, Phys. Rev. B 84, 195204 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Debuisschert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chipaux, M., Tallaire, A., Achard, J. et al. Magnetic imaging with an ensemble of nitrogen-vacancy centers in diamond. Eur. Phys. J. D 69, 166 (2015). https://doi.org/10.1140/epjd/e2015-60080-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60080-1

Keywords

Navigation