Skip to main content

Advertisement

Log in

Comparative analysis of the secondary electron yield from carbon nanoparticles and pure water medium

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The production of secondary electrons generated by carbon nanoparticles and pure water medium irradiated by fast protons is studied by means of model approaches and Monte Carlo simulations. It is demonstrated that due to a prominent collective response to an external field, the nanoparticles embedded in the medium enhance the yield of low-energy electrons. The maximal enhancement is observed for electrons in the energy range where plasmons, which are excited in the nanoparticles, play the dominant role. Electron yield from a solid carbon nanoparticle composed of fullerite, a crystalline form of C60 fullerene, is demonstrated to be several times higher than that from liquid water. Decay of plasmon excitations in carbon-based nanosystems thus represents a mechanism of increase of the low-energy electron yield, similar to the case of sensitizing metal nanoparticles. This observation gives a hint for investigation of novel types of sensitizers to be composed of metallic and organic parts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Delaney, S. Jacob, C. Featherstone, M. Barton, Cancer 104, 1129 (2005)

    Article  Google Scholar 

  2. European COST Action “Nanoscale insights into Ion-Beam Cancer Therapy” (Nano-IBCT), http://www.cost.eu/domains_actions/mpns/Actions/nano-ibct/

  3. FP7 Initial Training Network Project “Advanced Radiotherapy, Generated by Exploiting Nanoprocesses and Technologies” (ARGENT), http://www.itn-argent.eu

  4. I. Bacarelli, F.A. Gianturco, E. Scifoni, A.V. Solov’yov, E. Surdutovich, Eur. Phys. J. D 60, 1 (2010)

    Article  ADS  Google Scholar 

  5. D. Schardt, T. Elsässer, D. Schulz-Ertner, Rev. Mod. Phys. 82, 383 (2010)

    Article  ADS  Google Scholar 

  6. M. Durante, J.S. Loeffler, Nat. Rev. Clin. Oncol. 7, 37 (2010)

    Article  Google Scholar 

  7. E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 68, 353 (2014)

    Article  ADS  Google Scholar 

  8. A.V. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Phys. Rev. E 79, 011909 (2009)

    Article  ADS  Google Scholar 

  9. B.D. Michael, P. O’Neill, Science 287, 1603 (2000)

    Article  Google Scholar 

  10. S. Denifl, T.D. Märk, P. Scheier, in Radiation Damage in Biomolecular Systems, edited by G. Garcia Gomez-Tejedor, M.C. Fuss (Springer Science, Business Media B.V., 2012), p. 45

  11. B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)

    Article  ADS  Google Scholar 

  12. M.A. Huels, B. Boudaïffa, P. Cloutier, D. Hunting, L. Sanche, J. Am. Chem. Soc. 125, 4467 (2003)

    Article  Google Scholar 

  13. D.M. Herold, I.J. Das, C.C. Stobbe, R.V. Iyer, J.D. Chapman, Int. J. Radiat. Biol. 76, 1357 (2000)

    Article  Google Scholar 

  14. J.J. Hainfeld, D.N. Slatkin, H.M. Smilowitz, Phys. Med. Biol. 49, N309 (2004)

    Article  Google Scholar 

  15. S.J. McMahon et al., Sci. Rep. 1, 18 (2011); (Corrigendum: Sci. Rep. 3, 1725 (2013))

    Article  ADS  Google Scholar 

  16. W. Chen, J. Zhang, J. Nanosci. Nanotechnol. 6, 1159 (2006)

    Article  Google Scholar 

  17. E. Porcel, S. Liehn, H. Remita, N. Usami, K. Kobayashi, Y. Furusawa, C. Le Sech, S. Lacombe, Nanotechnology 21, 085103 (2010)

    Article  ADS  Google Scholar 

  18. F. Xiao, Y. Zheng, P. Cloutier, Y. He, D. Hunting, L. Sanche, Nanotechnology 22, 465101 (2011)

    Article  ADS  Google Scholar 

  19. Y. Zheng, D.J. Hunting, P. Ayotte, L. Sanche, Radiat. Res. 169, 19 (2008); (Erratum: Radiat. Res. 169, 481 (2008))

    Article  Google Scholar 

  20. C. Sicard-Roselli et al., Small 10, 3338 (2014)

    Article  Google Scholar 

  21. E. Porcel et al., Nanomed. Nanotech. Biol. Med. 10, 1601 (2014)

    Article  Google Scholar 

  22. L. Štefančíková, et al., Cancer Nanotech. 5, 6 (2014)

    Article  Google Scholar 

  23. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Phys. Rev. Lett. 114, 063401 (2015)

    Article  ADS  Google Scholar 

  24. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, J. Phys. Chem. C (in print), DOI: 10.1021/jp511419n

  25. I.V. Hertel, H. Steger, J. de Vries, B. Weisser, C. Menzel, B. Kamke, W. Kamke, Phys. Rev. Lett. 68, 784 (1992)

    Article  ADS  Google Scholar 

  26. Ph. Lambin, A.A. Lucas, J.-P. Vigneron, Phys. Rev. B 46, 1794 (1992)

    Article  ADS  Google Scholar 

  27. L.G. Gerchikov, P.V. Efimov, V.M. Mikoushkin, A.V. Solov’yov, Phys. Rev. Lett. 81, 2707 (1998)

    Article  ADS  Google Scholar 

  28. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, P. Bolognesi, A. Ruocco, L. Avaldi, J. Phys. B 45, 141002 (2012)

    Article  ADS  Google Scholar 

  29. B.P. Kafle, H. Katayanagi, M. Prodhan, H. Yagi, C. Huang, K. Mitsuke, J. Phys. Soc. Jpn 77, 014302 (2008)

    Article  ADS  Google Scholar 

  30. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Phys. Rev. A 88, 043201 (2013)

    Article  ADS  Google Scholar 

  31. Y. Ling, C. Lifshitz, Chem. Phys. Lett. 257, 587 (1996)

    Article  ADS  Google Scholar 

  32. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, J. Phys.: Conf. Ser. 490, 012159 (2014)

    ADS  Google Scholar 

  33. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, Heidelberg, 1995)

  34. J.-P. Connerade, A.V. Solov’yov, Phys. Rev. A 66, 013207 (2002)

    Article  ADS  Google Scholar 

  35. A.V. Solov’yov, Int. J. Mod. Phys. B 19, 4143 (2005)

    Article  ADS  Google Scholar 

  36. A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Eur. Phys. J. D 66, 253 (2012)

    Article  ADS  Google Scholar 

  37. J. Lindhard, K. Dan. Vidensk. Selsk. Mat-fys. Medd. 28, 8 (1954)

    MathSciNet  Google Scholar 

  38. S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  39. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  40. L.G. Gerchikov, A.N. Ipatov, A.V. Solov’yov, J. Phys. B 30, 5939 (1997)

    Article  ADS  Google Scholar 

  41. L.G. Gerchikov, A.N. Ipatov, R.G. Polozkov, A.V. Solov’yov, Phys. Rev. A 62, 043201 (2000)

    Article  ADS  Google Scholar 

  42. L.G. Gerchikov, A.V. Solov’yov, J.-P. Connerade, W. Greiner, J. Phys. B 30, 4133 (1997)

    Article  ADS  Google Scholar 

  43. P. Bolognesi, A. Ruocco, L. Avaldi, A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Eur. Phys. J. D 66, 254 (2012)

    Article  ADS  Google Scholar 

  44. D. Östling, P. Apell, A. Rosen, Europhys. Lett. 21, 539 (1993)

    Article  ADS  Google Scholar 

  45. S. Lo, A.V. Korol, A.V. Solov’yov, J. Phys. B 40, 3973 (2007)

    Article  ADS  Google Scholar 

  46. A.V. Korol, A.V. Solov’yov, Phys. Rev. Lett. 98, 179601 (2007)

    Article  ADS  Google Scholar 

  47. S.W.J. Scully et al., Phys. Rev. Lett. 94, 065503 (2005)

    Article  ADS  Google Scholar 

  48. E. Scifoni, E. Surdutovich, A.V. Solov’yov, Phys. Rev. E 81, 021903 (2010)

    Article  ADS  Google Scholar 

  49. P. de Vera, R. Garcia-Molina, I. Abril, A.V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013)

    Article  ADS  Google Scholar 

  50. P. de Vera, R. Garcia-Molina, I. Abril, Phys. Rev. Lett. 114, 018101 (2015)

    Article  ADS  Google Scholar 

  51. P. de Vera, E. Surdutovich, I. Abril, R. Garcia-Molina, A.V. Solov’yov, Eur. Phys. J. D 68, 96 (2014)

    Article  ADS  Google Scholar 

  52. Geant4 Collaboration, Physics Reference Manual, viewed 11 June 2013, http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/BackupVersions/V9.6/fo/PhysicsReferenceManual.pdf

  53. S. Guatelli, A. Mantero, B. Mascialino, P. Nieminen, M.G. Pia, IEEE Trans. Nucl. Sci. 54, 585 (2007)

    Article  ADS  Google Scholar 

  54. S. Chauvie et al., in Proceedings of IEEE-NSS (Rome, Italy, 2004)

  55. S. Incerti et al., Med. Phys. 37, 4692 (2010)

    Article  Google Scholar 

  56. R. Kuzuo, M. Terauchi, M. Tanaba, Y. Saito, H. Shinohara, Jpn J. Appl. Phys. 30, L1817 (1991)

    Article  ADS  Google Scholar 

  57. H. Deutsch, K. Becker, J. Pittner, V. Bonacic-Koutecky, S. Matt, T.D. Märk, J. Phys. B 29, 5175 (1996)

    Article  ADS  Google Scholar 

  58. M.E. Rudd, Y.-K. Kim, D.H. Madison, T.J. Gay, Rev. Mod. Phys. 64, 441 (1992)

    Article  ADS  Google Scholar 

  59. M.E. Rudd, Y.-K. Kim, T. Märk, J. Schou, N. Stolterfoht, L.H. Toburen, Secondary Electron Spectra from Charged Particle Interactions (International Commission on Radiation Units and Measurements, Bethesda, MD, 1996) (ICRU 55)

  60. E. Surdutovich, O.I. Obolensky, E. Scifoni, I. Pshenichnov, I. Mishustin, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 63 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Verkhovtsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verkhovtsev, A., McKinnon, S., de Vera, P. et al. Comparative analysis of the secondary electron yield from carbon nanoparticles and pure water medium. Eur. Phys. J. D 69, 116 (2015). https://doi.org/10.1140/epjd/e2015-50908-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50908-y

Keywords

Navigation