Skip to main content
Log in

Microwave microplasma sources based on microstrip-like transmission lines

  • Topical issue: Microplasmas: Scientific Challenges and Technological opportunities
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

In this paper, we study two microwave sources based on a planar transmission line configuration, corresponding to linear resonators. In both sources, micro-plasmas are produced within the 50–200 \(\mu \)m gap created between two metal electrodes placed at the open end of a microstrip-like transmission line. The study of the sources follows a complementary approach that uses simulation and experiment. Simulations analyze the electromagnetic behavior of the sources, using the commercial tool CST Microwave Studio®, and characterize the plasmas produced, using a fluid-type code to describe the dynamics of charged particles. Experimentally, the return loss of the sources (hence their quality factors) is measured without and with plasma. Plasma diagnostics (in air and in argon), based on optical emission spectroscopy measurements, enable to obtain the typical plasma temperatures and the electron density (using Stark broadening measurements of the H\(_{\beta}\) line-emission profile). Results reveal that the sources have similar quality factors (~15–20), yielding high-density (~1014 cm\(^{-3})\), low-power (~10–50 W), non-equilibrium micro-plasmas (with rotational temperatures of ~950–1400 K in air and ~550–630 K in argon, vibrational temperatures of ~5200–5800 K in air and excitation temperatures of ~5800 K in argon), over volumes of ~10-4–10-3 cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Iza, G.J. Kim, S.M. Lee, J.K. Lee, J.L. Walsh, Y.T. Zhang, M.G. Kong, Plasma Processes Polym. 5, 322 (2008)

    Article  Google Scholar 

  2. R. Foest, M. Schmidt, K. Becker, Int. J. Mass. Spectrom. 248, 87 (2006)

    Article  ADS  Google Scholar 

  3. M. Miclea, J. Franzke, Plasma Chem. Plasma Process. 27, 205 (2007)

    Article  Google Scholar 

  4. V. Karanassios, Spectrochim. Acta B 59, 909 (2004)

    Article  ADS  Google Scholar 

  5. M. Moisan, J. Pelletier, in Physique des Plasmas Collisionnels – Application aux Décharges Hautes Fréquences, collection Grenoble Sciences (EDP Sciences, Les Ulis, 2006)

  6. M.A. Lieberman, A.J. Lichtenberg, in Principles of Plasma Discharges and Materials Processing, edited by Wiley-Interscience (John Wiley & Sons, Inc., New York,1994)

  7. A.M. Bilgic, U. Engel, E. Voges, M. Kückelheim, J.A.C. Broekaert, Plasma Source. Sci. Technol. 9, 1 (2000)

    Article  ADS  Google Scholar 

  8. J.A.C. Broekaert, Anal. Bional. Chem. 374, 182 (2002)

    Article  Google Scholar 

  9. I.J. Zapata, P. Pohl, N.H. Bings, J.A.C. Broekaert, Anal. Bioanal. Chem. 388, 1615 (2007)

    Article  Google Scholar 

  10. J. Kim, K. Terashima, Appl. Phys. Lett. 86, 191504 (2005)

    Article  ADS  Google Scholar 

  11. J.J. Narenda, T.A. Grotjohn, J. Asmussen, Plasma Source. Sci. Technol. 17, 035027 (2008)

    Article  ADS  Google Scholar 

  12. F. Iza, J. Hopwood, IEEE Trans. Plasma Sci. 31, 782 (2003)

    Article  ADS  Google Scholar 

  13. F. Iza, J. Hopwood, IEEE Trans. Plasma Sci. 32, 498 (2004)

    Article  ADS  Google Scholar 

  14. F. Iza, J. Hopwood, Plasma Source. Sci. Technol. 14, 397 (2005)

    Article  ADS  Google Scholar 

  15. J. Xue, J.A. Hopwood, IEEE Trans. Plasma Sci. 37, 816 (2009)

    Article  ADS  Google Scholar 

  16. R. Stonies, S. Shermer, E. Voges, J.A.C. Broekaert, Plasma Sour. Sci. Technol. 13, 604 (2004)

    Article  ADS  Google Scholar 

  17. J. Choi, F. Iza, H.J. Do, J.K. Lee, M.H. Cho, Plasma Source. Sci. Technol 18, 025029 (2009)

    Article  ADS  Google Scholar 

  18. J. Gregório, O. Leroy, P. Leprince, L.L. Alves, C. Boisse-Laporte, IEEE Trans. Plasma Sci. 37, 797 (2009)

    Article  ADS  Google Scholar 

  19. http://www.cst.com/, accessed in April 2010

  20. J. Gregório, C. Boisse-Laporte, L.L. Alves, Eur. Phys. J. Appl. Phys 49, 13102 (2010)

    Article  ADS  Google Scholar 

  21. R.E. Collin, in Foundations for Microwave Engineering, 2nd edition (Wiley-IEEE Press, 2001)

  22. http://www.specair-radiation.net/, accessed in April 2010

  23. http://www.sri.com/psd/lifbase/, accessed in April 2010

  24. H.R. Griem, in Principles of Plasma Spectroscopy (Cambridge Univ. Press, 1997)

  25. M.A. Gigosos, M.A. Gonzalez, V. Cardeñoso, Spectrochim. Acta B 58, 1486 (2003)

    Article  ADS  Google Scholar 

  26. A. Yanguas, J. Cotrino, L.L. Alves, J. Phys. D 38, 1588 (2005)

    Article  ADS  Google Scholar 

  27. E. Castaños-Martinez, Y. Kabouzi, K. Makasheva, M. Moisan, Phys. Rev. E 70, 066405 (2004)

    Article  ADS  Google Scholar 

  28. Y. Kabouzi, D.B. Graves, E. Castaños-Martinez, M. Moisan, Phys. Rev. E 75, 016402 (2007)

    Article  ADS  Google Scholar 

  29. A. Salabas, G. Gousset, L.L. Alves, Plasma Source. Sci. Technol. 11, 448 (2002)

    Article  Google Scholar 

  30. L.L. Alves, Plasma Source. Sci. Technol. 16, 557 (2007)

    Article  ADS  Google Scholar 

  31. Handbook of Chemistry and Physics, edited by D.R. Lide, 84th edition (CRC press, 2003)

  32. D.M. Manos, D.L. Flamm, in Plasma Etching – An Introduction (Academic Press, 1989)

  33. E.W. McDaniel, E.A. Mason, in The Mobility and Diffusion of Ions in Gases (Wiley-IEEE Press, 1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Boisse-Laporte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregório, J., Alves, L., Leroy, O. et al. Microwave microplasma sources based on microstrip-like transmission lines. Eur. Phys. J. D 60, 627–635 (2010). https://doi.org/10.1140/epjd/e2010-00237-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00237-x

Keywords

Navigation