Skip to main content
Log in

Configuration complexities of hydrogenic atoms

  • Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The Fisher-Shannon and Cramer-Rao information measures, and the LMC-like or shape complexity (i.e., the disequilibrium times the Shannon entropic power) of hydrogenic stationary states are investigated in both position and momentum spaces. First, it is shown that not only the Fisher information and the variance (then, the Cramer-Rao measure) but also the disequilibrium associated to the quantum-mechanical probability density can be explicitly expressed in terms of the three quantum numbers (n,l,m) of the corresponding state. Second, the three composite measures mentioned above are analytically, numerically and physically discussed for both ground and excited states. It is observed, in particular, that these configuration complexities do not depend on the nuclear charge Z. Moreover, the Fisher-Shannon measure is shown to quadratically depend on the principal quantum number n. Finally, sharp upper bounds to the Fisher-Shannon measure and the shape complexity of a general hydrogenic orbital are given in terms of the quantum numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, 1949)

  2. A.J. Stam, Information and Control 2, 101 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  3. O. Onicescu, C.R. Acad. Sci. Paris A 263, 25 (1966)

    MathSciNet  Google Scholar 

  4. R. Carbo-Dorca, J. Arman, L. Leyda, Int. J. Quant. Chem. 17, 1185 (1980)

    Article  Google Scholar 

  5. R. Lopez-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995)

    Article  ADS  Google Scholar 

  6. J. Pipek, I. Varga, Phys. Rev. A 46, 3148 (1992)

    Article  ADS  Google Scholar 

  7. M.T. Martin, A. Plastino, O.A. Rosso, Phys. Lett. A 311, 126 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. C. Anteneodo, A.R. Plastino, Phys. Lett. A 223, 348 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. B.R. Frieden, Science from Fisher Information (Cambridge Univ. Press, Cambridge, 2004)

    MATH  Google Scholar 

  10. S.B. Sears, R.G. Parr, U. Dinur, Isr. J. Chem. 19, 165 (1980)

    Google Scholar 

  11. J.C. Angulo, J.S. Dehesa, J. Chem. Phys. 97, 6485 (1992)

    Article  ADS  Google Scholar 

  12. J.C. Angulo, J. Antolín, J. Chem. Phys. 128, 164109 (2008)

    Article  ADS  Google Scholar 

  13. J.C. Angulo, J. Antolín, K.D. Sen, Phys. Lett. A 372, 670 (2008)

    Article  ADS  Google Scholar 

  14. C.P. Panos, K.C. Chatzisavvas, C.C. Moustakidis, E.G. Kyrkou, Phys. Lett. A 363, 78 (2007)

    Article  ADS  Google Scholar 

  15. J.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)

    Book  MATH  Google Scholar 

  16. A. Dembo, T.A. Cover, J.A. Thomas, IEEE Trans. Inf. Theory 37, 1501 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. R.G. Catalan, J. Garay, R. Lopez-Ruiz, Phys. Rev. E 66, 011102 (2002)

    Article  ADS  Google Scholar 

  18. J. Sañudo, R. Lopez-Ruiz, Phys. Lett. A 372, 5283 (2008)

    Article  ADS  Google Scholar 

  19. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-electron Atoms (Springer-Verlag, Berlin, 1957)

    MATH  Google Scholar 

  20. J.D. Hey, Am. J. Phys. 61, 741 (1993)

    Article  ADS  Google Scholar 

  21. E. Romera, P. Sánchez-Moreno, J.S. Dehesa, Chem. Phys. Lett. 414, 468 (2005)

    Article  ADS  Google Scholar 

  22. J.D. Dehesa, S. López-Rosa, B. Olmos, R.J. Yáñez, J. Comput. Appl. Math. 179, 185 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. R.J. Yáñez, W. Van Assche, J.S. Dehesa, Phys. Rev. A 50, 3065 (1994)

    Article  ADS  Google Scholar 

  24. V. Buyarov, J.S. Dehesa, A. Martínez-Finkelshtein, J. Sánchez-Lara, SIAM J. Sci. Comput. 26, 488 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. R.J. Yáñez, W. van Assche, R. González-Férez, J.S. Dehesa, J. Math. Phys. 40, 5675 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. J.S. Dehesa, A. Martínez-Finkelshtein, J. Sánchez-Ruíz, J. Comput. Appl. Math 133, 579 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. J.S. Dehesa, S. López-Rosa, R.J. Yañez, J. Math. Phys. 48, 043503 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  28. S.R. Gadre, R.D. Bendale, Phys. Rev. A 36, 1932 (1987)

    Article  ADS  Google Scholar 

  29. I. Bialyncki, J. Mycielski, Commun. Math. Phys. 44, 129 (1975)

    Article  ADS  Google Scholar 

  30. J.S. Dehesa, S. Lopez-Rosa, A. Martínez-Finkelshtein, R.J. Yáñez, Int. J. Quant. Chem. (in press)

  31. See e.g. L.C. Biedenharn, J.D. Louck, Angular Momentum in Quantum Physics (Addison-Wesley, Reading, 1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. López-Rosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehesa, J., López-Rosa, S. & Manzano, D. Configuration complexities of hydrogenic atoms. Eur. Phys. J. D 55, 539–548 (2009). https://doi.org/10.1140/epjd/e2009-00251-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00251-1

PACS

Navigation