Skip to main content
Log in

Role of confinements on the melting of Wigner molecules in quantum dots

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We explore the stability of a Wigner molecule (WM) formed in confinements with different geometries emulating the role of disorder and analyze the melting (or crossover) of such a system. Building on a recent calculation [D. Bhattacharya, A. Ghosal, Eur. Phys. J. B 86, 499 (2013)] that discussed the effects of irregularities on the thermal crossover in classical systems, we expand our studies in the untested territory by including both the effects of quantum fluctuations and of disorder. Our results, using classical and quantum (path integral) Monte Carlo techniques, unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale n X . This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows “melting” from the WM to both the classical and quantum “liquids”. An intriguing signature of weakening liquidity with increasing temperature, T, is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal “melting”. Our analyses carry serious implications for a variety of experiments on many-particle systems − semiconductor heterostructure quantum dots, trapped ions, nanoclusters, colloids and complex plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Huang, Statistical Mechanics (Wiley, New York, 1987)

  2. C.N. Yang, T.D. Lee, Phys. Rev. 87, 404 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Egger, W. Häusler, C.H. Mak, H. Grabert, Phys. Rev. Lett. 82, 3320 (1999)

    Article  ADS  Google Scholar 

  4. A.V. Filinov, M. Bonitz, Yu.E. Lozoviki, Phys. Rev. Lett. 86, 3851 (2001)

    Article  ADS  Google Scholar 

  5. A. Ghosal, A.D. Güclü, C.J. Umrigar, D. Ullmo, H.U. Baranger, Nat. Phys. 2, 336 (2006)

    Article  Google Scholar 

  6. A.D. Güclü, A. Ghosal, C.J. Umrigar, H.U. Baranger, Phys. Rev. B 77, 041301 (2008)

    Article  ADS  Google Scholar 

  7. J. Böning, A. Filinov, P. Ludwig, M. Bonitz, H. Baumgartner, M. Bonitz, Yu.E. Lozovik, Phys. Rev. Lett. 100, 113401 (2008)

    Article  ADS  Google Scholar 

  8. A. Schella, T. Miksch, A. Melzer, J. Schablinski, B. Dietmar, A. Piel, H. Thomsen, P. Ludwig, M. Bonitz, Phys. Rev. E 84, 056402 (2011)

    Article  ADS  Google Scholar 

  9. D.G. Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Höfer, P. Leiderer, K. Kono, J. Low Temp. Phys. 166, 107 (2012)

    Article  ADS  Google Scholar 

  10. E. Wigner, Phys. Rev. 46, 1002 (1934)

    Article  ADS  Google Scholar 

  11. B. Tanatar, D.M. Ceperley, Phys. Rev. B 39, 5005 (1989)

    Article  ADS  Google Scholar 

  12. A. Melzer, B. Buttenschön, T. Miksch, M. Passvogel, D. Block, O. Arp, A. Piel, Plasma Phys. Control. Fusion 52, 124028 (2010)

    Article  ADS  Google Scholar 

  13. E. Abrahams, S.V. Kravchenko, M.P. Sarachik, Rev. Mod. Phys. 73, 251 (2001)

    Article  ADS  Google Scholar 

  14. B.L. Altshuler, A.G. Aronov, in Electron-electron interactions in Disordered Systems, edited by A.L. Efros, M. Pollak (North-Holland, Amsterdam, 1985)

  15. S.T. Chui, B. Tanatar, Phys. Rev. Lett. 74, 458 (1995)

    Article  ADS  Google Scholar 

  16. J. Yoon, C.C. Li, D. Shahar, D.C. Tsul, M. Shayegan, Phys. Rev. Lett. 82, 1744 (1999)

    Article  ADS  Google Scholar 

  17. X. Waintal, Phys. Rev. B 73, 075417 (2006)

    Article  ADS  Google Scholar 

  18. B. Spivak, S.A. Klvelson, Phys. Rev. B 70, 155114 (2004)

    Article  ADS  Google Scholar 

  19. S. Chakravarty, S. Kivelson, C. Nayak, K. Voelker, Phil. Mag. 79, 859 (1998)

    Article  Google Scholar 

  20. M. Aizenman, J. Wehr, Phys. Rev. B 62, 2503 (1989)

    ADS  MathSciNet  Google Scholar 

  21. R.L. Greenblatt, M. Aizenman, J.L. Lebowitz, Phys. Rev. Lett. 103, 197201 (2009)

    Article  ADS  Google Scholar 

  22. R.C. Ashoori, Nature 379, 413 (1996)

    Article  ADS  Google Scholar 

  23. I.M. Buluta, S. Hasegawa, J. Phys. B 42, 154004 (2009)

    Article  ADS  Google Scholar 

  24. D.G. Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Höfer, P. Leiderer, K. Kono, J. Low Temp. Phys. 166, 107 (2012)

    Article  ADS  Google Scholar 

  25. C. Yannouleas, U. Landman, Rep. Prog. Phys. 70, 2067 (2007)

    Article  ADS  Google Scholar 

  26. C.M. Marcus et al., Chaos Solitons Fractals 8, 1261 (1997)

    Article  ADS  Google Scholar 

  27. J.A. Folk, S.R. Patel, K.M. Birnbaum, C.M. Marcus, C.I. Duruöz, J.S. Harris, Jr., Phys. Rev. Lett. 86, 2102 (2001)

    Article  ADS  Google Scholar 

  28. U. Sivan, R. Berkovits, Y. Aloni, O. Prus, A. Auerbach, G. Ben-Yoseph, Phys. Rev. Lett. 77, 1123 (1996)

    Article  ADS  Google Scholar 

  29. S.M. Maurer, S.R. Patel, C.M. Marcus, C.I. Duruöz, J.S. Harris, Phys. Rev. Lett. 83, 1403 (1999)

    Article  ADS  Google Scholar 

  30. A. Ghosal, A.D. Güclü, C.J. Umrigar, D. Ullmo, H.U. Baranger, Phys. Rev. B 76, 085341 (2007)

    Article  ADS  Google Scholar 

  31. A. Ghosal, C.J. Umrigar, H. Jiang, D. Ullmo, H.U. Baranger, Phys. Rev. B 71, 241306 (2005)

    Article  ADS  Google Scholar 

  32. D. Bhattacharya, A. Ghosal, Eur. Phys. J. B 86, 499 (2013)

    Article  ADS  Google Scholar 

  33. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  34. B.I. Halperin, D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  35. A.P. Young, Phys. Rev. B 19, 1855 (1979)

    Article  ADS  Google Scholar 

  36. D.R. Nelson, in Proceedings of the Fifth International Summer School on Fundamental Problems in Statistical Mechanics, edited by E.G.D. Cohen (North-Holland, Amsterdam, 1980), p. 53

  37. O. Bohigas, S. Tomsovic, D. Ullmo, Phys. Rep. 223, 43 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  38. D. Ullmo, T. Nagano, S. Tomsovic, Phys. Rev. Lett. 90, 176801 (2003)

    Article  ADS  Google Scholar 

  39. H. Jiang, H.U. Baranger, W. Yang, Phys. Rev. Lett. 90, 026806 (2003)

    Article  ADS  Google Scholar 

  40. D. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  41. A. Filinov, M. Bonitz, in Introduction to Computational Methods in Many Body Physics (Rinton, Princeton, 2006), pp. 235−350

  42. V. Černý, J. Optim. Theory Appl. 45, 42 (1985)

    Google Scholar 

  43. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  44. F.A. Lindemann, Z. Phys. 11, 609 (1910)

    Google Scholar 

  45. Yu.E. Lozovik, Sov. Phys. Usp. 30, 912 (1987)

    Article  ADS  Google Scholar 

  46. V.M. Bedanov, F.M. Peeters, Phys. Rev. B 49, 2667 (1994)

    Article  ADS  Google Scholar 

  47. Yu.E. Lozovik, E.A. Rakoch, Phys. Rev. B 57, 1214 (1998)

    Article  ADS  Google Scholar 

  48. G.E. Astrakharchik, J. Boronat, I.L. Kurbakov, Yu.E. Lozovik, Phys. Rev. Lett. 98, 060405 (2007)

    Article  ADS  Google Scholar 

  49. A. Filinov, J. Böning, M. Bonitz, Yu.E. Lozovik, Phys. Rev. B 77, 214527 (2008)

    Article  ADS  Google Scholar 

  50. B.K. Clark, M. Casula, D.M. Ceperley, Phys. Rev. Lett. 103, 055701 (2009)

    Article  ADS  Google Scholar 

  51. D.R. Nelson, B.I. Halperin, Phys. Rev. B 19, 2457 (1979)

    Article  ADS  Google Scholar 

  52. P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)

    Article  ADS  Google Scholar 

  53. H. Kleinert, Path Integrals in Quantum Mechanics Statistics and Polymer Physics (World Scientific Publishing, 1994)

  54. A.V. Filinov, V.O. Golubnychiy, M. Bonitz, W. Ebeling, J.W. Dufty, Phys. Rev. E 70, 046411 (2004)

    Article  ADS  Google Scholar 

  55. J. Schablinski, D. Block, A. Piel, A. Melzer, H. Thomsen, H. Kählert, M. Bonitz, Phys. Plasmas 19, 013705 (2012)

    Article  ADS  Google Scholar 

  56. T. Ott, M. Stanley, M. Bonitz, Phys. Plasmas 18, 063701 (2011)

    Article  ADS  Google Scholar 

  57. M. Kleman, J. Friedel, Rev. Mod. Phys. 80, 61 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  58. R. Klein, Computational Geometry and its Applications 333, 148 (1988)

    Article  Google Scholar 

  59. S.G. Akopov, Yu.E. Lozovik, J. Phys. C 15, 4403 (1982)

    Article  ADS  Google Scholar 

  60. H.R. Glyde, Excitations in Liquid and Solid Helium (Clarendon Press, Oxford, 1994)

  61. S. De Palo, S. Conti, S. Moroni, Phys. Rev. B 69, 035109 (2004)

    Article  ADS  Google Scholar 

  62. T. Dornheim, S. Groth, A. Filinov, M. Bonitz, New J. Phys. 17, 073017 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexei V. Filinov or Amit Ghosal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, D., Filinov, A., Ghosal, A. et al. Role of confinements on the melting of Wigner molecules in quantum dots. Eur. Phys. J. B 89, 60 (2016). https://doi.org/10.1140/epjb/e2016-60448-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60448-5

Keywords

Navigation