Skip to main content
Log in

Confinement effects on an ultra-cold matter wave-packet by a square well impurity near the de-localization threshold: analytic solutions, scaling, and width properties

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The determination of the maximum number of atoms and the density profile of an ultra-cold wave-packet, under confinement conditions by an attractive impurity near the de-localization threshold, have been an open problem in ultra-cold atom physics. In this work, we study the effect of a wave-guide impurity on an ultra-cold matter wave-packet at the threshold of de-localization. The impurity is modeled by a 1-D square well potential with depth V 0 and length 2R 0. Coupling of the square well potential to a contact impurity of strength β at the center is also considered. The time-independent non-linear Schrödinger equation describing a Bose-Einstein condensate at the delocalization threshold is exactly solved. The density profile, maximum non-linear coupling constant, g max, and maximum number of atoms, N max, prompt to be localized by the defect potential in the ground and first excited states are also reported. It is shown that g max and the density profiles become only functions of the reduced impurity size ξ = √V 0 R 0. It is also found that the first excited state at the threshold of de-localization exists only for ξ ≥ π/(2√2), always holding a lower number of atoms than the corresponding ground state for the same reduced impurity size. Also, the addition of a repulsive contact impurity leads to a non-linear coupling constant at the de-localization threshold lower than that of the square well potential. In spite of the non-linear character of the Gross-Pitaevskii equation, it is found that a general scaling-law holds for defects with the same ξ, related with the same g max, having the same reduced density profile in the quasi-free direction. We report the full width at half maximum for the wave-function and density profile, finding a large spread for small reduced confining conditions. Implications of these results for the determination of the wave-packet properties under confinement in atom chip and Bose-Einstein condensates are presented with the aim to motivate further experimental work.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bose-Einstein Condensation, edited by A. Griffin, D. Snoke, S. Stringaro (Cambridge University Press, New York, 1995)

  2. A.S. Parkins, D.F. Walls, Phys. Rep. 303, 1 (1998)

    Article  ADS  Google Scholar 

  3. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  4. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001)

    Article  ADS  Google Scholar 

  5. J. Reichel, W. Hänsel, T.W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999)

    Article  ADS  Google Scholar 

  6. K. Brugger, T. Calarco, D. Cassettari, R. Folman, A. Haase, B. Hessmo, P. Krger, T. Maier, J. Schmiedmayer, J. Mod. Opt. 47, 2789 (2000)

    Article  ADS  Google Scholar 

  7. K. Henderson, C. Ryu, C. MacCormick, M.G. Boshier, New J. Phys. 11, 043030 (2009)

    Article  ADS  Google Scholar 

  8. J. Fortágh, C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007)

    Article  ADS  Google Scholar 

  9. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009)

    Article  ADS  Google Scholar 

  10. A.E. Leanhardt, A.P. Chikkatur, D. Kielpinski, Y. Shin, T.L. Gustavson, W. Ketterle, D.E. Pritchard, Phys. Rev. Lett. 89, 040401 (2002)

    Article  ADS  Google Scholar 

  11. M. Jääskeläinen, S. Stenholm, Phys. Rev. A 66, 023608 (2002)

    Article  MathSciNet  Google Scholar 

  12. T. Lahaye, P. Cren, C. Roos, D. Guéry-Odelin, Commun. Nonlin. Sci. Numer. Simul. 8, 315 (2003)

    Article  MATH  Google Scholar 

  13. P. Leboeuf, N. Pavloff, S. Sinha, Phys. Rev. A 68, 063608 (2003)

    Article  ADS  Google Scholar 

  14. M. Koehler, M.W.J. Bromley, B.D. Esry, Phys. Rev. A 72, 023603 (2005)

    Article  ADS  Google Scholar 

  15. P. Leboeuf, N. Pavloff, Phys. Rev. A 64, 033602 (2001)

    Article  ADS  Google Scholar 

  16. M.W.J. Bromley, B.D. Esry, Phys. Rev. A 68, 043609 (2003)

    Article  ADS  Google Scholar 

  17. M.W.J. Bromley, B.D. Esry, Phys. Rev. A 69, 053620 (2004)

    Article  ADS  Google Scholar 

  18. T. Ernst, J. Brand, Phys. Rev. A 81, 033614 (2010)

    Article  ADS  Google Scholar 

  19. G.L. Gattobigio, A. Couvert, B. Georgeot, D. Guéry-Odelin, New J. Phys. 12, 085013 (2010)

    Article  ADS  Google Scholar 

  20. L.D. Carr, K.W. Mahmud, W.P. Reinhardt, Phys. Rev. A 64, 033603 (2001)

    Article  ADS  Google Scholar 

  21. R. Cabrera-Trujillo, M.W.J. Bromley, B.D. Esry, arXiv:1202.4801v1 (2012)

  22. B.T. Seaman, L.D. Carr, M.J. Holland, Phys. Rev. A 71, 033609 (2005)

    Article  ADS  Google Scholar 

  23. G. Baym, C.J. Pethick, Phys. Rev. Lett. 76, 6 (1996)

    Article  ADS  Google Scholar 

  24. E. Kamke, Differentialgleichungen, lösungsmethoden und lösungen (Leipzig, 1959)

  25. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)

  26. S.E. Kooning, D.C. Meredith, Computational Physics, FORTRAN version (Perseus Books, Reading, MA, USA, 1990)

  27. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remigio Cabrera-Trujillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Fragoso, R., Cabrera-Trujillo, R. Confinement effects on an ultra-cold matter wave-packet by a square well impurity near the de-localization threshold: analytic solutions, scaling, and width properties. Eur. Phys. J. D 69, 139 (2015). https://doi.org/10.1140/epjd/e2015-50736-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50736-1

Keywords

Navigation