Skip to main content
Log in

\(^\mathsf{207}\)Pb MAS NMR and conductivity identified anomalous phase transition in nanostructured PbF\(_\mathsf{2}\)

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Lead fluoride, a superionic conductor was prepared in its nanostructured form by Inert Gas Condensation Technique (IGCT) using an Ultra High Vacuum (UHV) chamber. The average grain size was found to be in the range 9 to 43 nm. The existence of mixed phases (\(\alpha \) and \(\beta\)-PbF2) was identified using XRD. Solid state 207Pb MAS NMR was carried to average out the dipolar interaction and the resultant isotropic peaks were assigned to the corresponding phases. At high spinning frequencies, one isotropic peak emerged from the contribution of the grain boundary region. The relative intensity of this peak is reduced as the grain size is increased, independent of the concentration of the phases. This is related to the fact that the volume fraction of grain boundary atoms in nanostructured materials increases with the reduction of grain size. The width of the NMR resonance peak is found to be reduced as the grain size goes down. The structural phase transformations were identified at two different temperature regions. The first phase transformation from \(\beta\) to \(\alpha \) phase in the annealing temperature range 573 K to 623 K is attributed to some anomalies related to the material microstructure and this has not been reported in earlier literatures. The second phase transformation from \(\alpha \) to \(\beta\) in the temperature range 623 K to 673 K is similar to the already reported transformation. Electrical conductivity \(\sigma \), of the samples was obtained from the complex impedance spectroscopy studies. Conduction species was identified as F- ion through anion vacancies. The magnitude of the conductivity varied according to the dominant phase available when the grain size is higher. But at lower grain sizes below 20 nm, it shows enhanced conductivity that is attributed to the grain size effect. The NMR and conductivity data have jointly supported the anomalous phase transition at the annealing temperature of 623 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989)

    Article  Google Scholar 

  2. C.E. Derrington, A. Navrotsky, M. O’Keeffe, Solid State Commun. 18, 47 (1976)

    Article  Google Scholar 

  3. G.A. Samara, J. Phys. Chem. Solids 40, 509 (1979)

    Article  Google Scholar 

  4. G.A. Samara, Phys. Rev. B 13, 4529 (1976)

    Article  Google Scholar 

  5. J.H. Kennedy, R. Miles, J. Hunter, J. Electrochem. Soc.: Electrochem. Sci. Tech. 120, 1441 (1973)

    Google Scholar 

  6. N. Egashira, H. Kokado, Jpn J. Appl. Phys. 25, L462 (1986)

  7. J.W. Fergus, Sensors and Actuators B 42, 119 (1997)

    Article  Google Scholar 

  8. J. Schoonman, L.B. Ebert, C.H. Hsieh, R.A. Huggins, J. Appl. Phys. 46, 2873 (1975)

    Article  Google Scholar 

  9. C.E. Derrington, M. O’Keeffe, Nature 246, 44 (1973)

    Google Scholar 

  10. C.C. Liang, A.V. Joshi, J. Electrochem. Soc.: Electrochem. Sci. Tech. 122, 466 (1975)

    Google Scholar 

  11. J. Schoonman, G.A. Korteweg, R.W. Bonne, Solid State Commun. 16, 9 (1975)

    Article  Google Scholar 

  12. G.K. White, J. Phys. C 13, 4905 (1980)

    Article  Google Scholar 

  13. P. Kozma, R. Bajgar, P. Kozma Jr, Nucl. Inst. Meth. Phys. Res. A 484, 149 (2002)

    Google Scholar 

  14. D.F. Anderson, M. Kobayashi, C.L. Woody, Y. Yoshimura, Nucl. Inst. Meth. Phys. Res. A 290, 385 (1990)

    Google Scholar 

  15. Y.-S. Kye, S. Connolly, B. Herreros, G.S. Harbison, Main Group Metal Compounds 22, 373 (1999)

    Google Scholar 

  16. H.G. Niessen, M. Van Buskirk, C. Dybowski, D.R. Corbin, J.A. Reimer, A.T. Bell, J. Phys. Chem. B 105, 2945 (2001)

    Article  Google Scholar 

  17. F. Wang, C.P. Grey, J. Am. Chem. Soc. 120, 970 (1998)

    Article  Google Scholar 

  18. F. Fayon, I. Farnan, C. Bessada, J. Coutures, D. Massiot, J.P. Coutures, J. Am. Chem. Soc. 119, 6837 (1997)

    Article  Google Scholar 

  19. B. Bureau, G. Silly, J.Y. Buzaré, Solid State NMR 15, 79 (1999)

    Article  Google Scholar 

  20. B.H. Suits, M. Meng, R.W. Siegel, Y.X. Liao, J. Mater. Res. 9, 336 (1994)

    Google Scholar 

  21. B.H. Suits, R.W. Siegel, Y.X. Liao, Nanostruct. Mater. 2, 597 (1993)

    Article  Google Scholar 

  22. B.D. Cullity, in Elements of X-ray Diffraction (Addison-Wesley, 1977), p. 81

  23. L. Ehm, K. Knorr, F. Mädler, H. Voigtländer, E. Busetto, A. Cassetta, A. Lausi, B. Winkler, J. Phys. Chem. Solids 64, 919 (2003)

    Article  Google Scholar 

  24. M. Nagai, T. Kushida, T. Nishino, Solid State Ionics 62, 151 (1993)

    Article  Google Scholar 

  25. M. Nagai, T. Nishino, Solid State Ionics 99, 221 (1997)

    Article  Google Scholar 

  26. A. Meyer, J. Ten Eicken, O.V. Glumov, W. Gunsser, M. Karus, I.V. Murin, Rad. Effects: Defects in Solids 137, 147 (1995)

    Google Scholar 

  27. M. Aoki, Y.-M. Chiang, I. Kosacki, L.J.R. Lee, H. Tuller, Y. Liu, J. Am. Ceram. Soc. 79, 1169 (1996)

    Google Scholar 

  28. A.K. Jonscher, J.M. Réau, J. Mater. Res. 13, 563 (1978)

    Article  Google Scholar 

  29. J. Lee, J.-H. Hwang, J.J. Mashek, J.O. Manon, A.E. Miller, R.W. Siegel, J. Mater. Res. 9, 2295 (1995)

    Google Scholar 

  30. R.N. Viswanath, S.N. Ramasamy, Mater. Trans. 42, 2601 (2001)

    Google Scholar 

  31. A. Chandra Bose, Ph.D. thesis, University of Madras, India, p. 115 (2002)

  32. R.W. Bonne, J. Schoonman, J. Electrochem. Soc.: Electrochem. Sci. Tech. 124, 28 (1977)

    Google Scholar 

  33. J.H. Kennedy, R.C. Miles, J. Electrochem. Soc.: Solid State Sci. Tech. 123, 47 (1976)

    Google Scholar 

  34. G.A. Samara, Ferroelectrics 17, 357 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramasamy.

Additional information

Received: 1 February 2004, Published online: 9 April 2004

PACS:

72.60. + g Mixed conductivity and conductivity transitions - 61.10.Nz X-ray diffraction - 76.60.-k Nuclear magnetic resonance and relaxation - 76.60.Cq Chemical and Knight shifts

P.T. Manoharan: Honorary Professor, JNCASR, Bangalore

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thangadurai, P., Ramasamy, S. & Manoharan, P.T. \(^\mathsf{207}\)Pb MAS NMR and conductivity identified anomalous phase transition in nanostructured PbF\(_\mathsf{2}\) . Eur. Phys. J. B 37, 425–432 (2004). https://doi.org/10.1140/epjb/e2004-00077-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00077-1

Keywords

Navigation