Skip to main content
Log in

Simulating (electro)hydrodynamic effects in colloidal dispersions: Smoothed profile method

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Previously, we have proposed a direct simulation scheme for colloidal dispersions in a Newtonian solvent (Phys. Rev. E 71, 036707 (2005)). An improved formulation called the “Smoothed Profile (SP) method” is presented here in which simultaneous time-marching is used for the host fluid and colloids. The SP method is a direct numerical simulation of particulate flows and provides a coupling scheme between the continuum fluid dynamics and rigid-body dynamics through utilization of a smoothed profile for the colloidal particles. Moreover, the improved formulation includes an extension to incorporate multi-component fluids, allowing systems such as charged colloids in electrolyte solutions to be studied. The dynamics of the colloidal dispersions are solved with the same computational cost as required for solving non-particulate flows. Numerical results which assess the hydrodynamic interactions of colloidal dispersions are presented to validate the SP method. The SP method is not restricted to particular constitutive models of the host fluids and can hence be applied to colloidal dispersions in complex fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, 2nd edition (Martinus Nijhoff, Dordrecht, 1983).

    Google Scholar 

  2. S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Butterworth-Heinemann, London, 1991).

    Google Scholar 

  3. W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, UK, 1989).

    Google Scholar 

  4. C.N. Likos, Phys. Rep. 348, 267 (2001).

    Article  ADS  Google Scholar 

  5. J.F. Brady, G. Bossis, Annu. Rev. Fluid Mech. 20, 111 (1988).

    Article  ADS  Google Scholar 

  6. A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999).

    Article  ADS  Google Scholar 

  7. H. Tanaka, T. Araki, Phys. Rev. Lett. 85, 1338 (2000).

    Article  ADS  Google Scholar 

  8. T. Kajishima, S. Takiguchi, H. Hamasaki, Y. Miyake, JSME Int. J., Ser. B 44, 526 (2001).

    Article  Google Scholar 

  9. H.H. Hu, N.A. Patankar, M.Y. Zhu, J. Comput. Phys. 192, 427 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Périaux, J. Comput. Phys. 192, 363 (2001).

    Article  ADS  Google Scholar 

  11. A.J.C. Ladd, R. Verberg, J. Stat. Phys. 104, 1191 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  12. J.T. Padding, A.A. Louis, Phys. Rev. Lett. 93, 220601 (2004).

    Google Scholar 

  13. M.E. Cates, K. Stratford, R. Adhikari, P. Stansell, J.C. Desplat, I. Pagonabarraga, A.J. Wagner, J. Phys.: Condens. Matter 16, S3903 (2004).

    Article  ADS  Google Scholar 

  14. Y.W. Kim, R.R. Netz, Europhys. Lett. 72, 837 (2005).

    Article  ADS  Google Scholar 

  15. T. Yamaue, M. Sasaki, T. Taniguchi, Multi-Phase Dynamics Program “Muffin” User’s Manual, http://octa.jp (2005).

  16. V. Lobaskin, B. Dünweg, C. Holm, J. Phys.: Condens. Matter 16, S4063 (2004).

    Article  ADS  Google Scholar 

  17. A. Chatterji, J. Horbach, J. Chem. Phys. 122, 184903 (2005).

    Google Scholar 

  18. F. Capuani, I. Pagonabarraga, D. Frenkel, J. Chem. Phys. 121, 973 (2004).

    Article  ADS  Google Scholar 

  19. F. Capuani, I. Pagonabarraga, D. Frenkel, J. Chem. Phys. 124, 124903 (2006).

    Google Scholar 

  20. Y. Nakayama, R. Yamamoto, Phys. Rev. E 71, 036707 (2005).

    Google Scholar 

  21. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959).

    Google Scholar 

  22. C.S. Peskin, D.M. McQueen, J. Comput. Phys. 81, 372 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. J. Dzubiella, H. Löwen, C.N. Likos, Phys. Rev. Lett. 91, 248301 (2003).

    Google Scholar 

  24. H. Kodama, K. Takeshita, T. Araki, H. Tanaka, J. Phys.: Condens. Matter 16, L115 (2004).

    Article  ADS  Google Scholar 

  25. A.A. Zick, G.M. Homsy, J. Fluid Mech. 115, 13 (1982).

    Article  MATH  ADS  Google Scholar 

  26. H. Hasimoto, J. Fluid Mech. 5, 317 (1959).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. D.J. Jeffrey, Y. Onishi, J. Fluid Mech. 139, 261 (1984).

    Article  MATH  ADS  Google Scholar 

  28. R.C. Ball, J.R. Melrose, Physica A 247, 444 (1997).

    Article  ADS  Google Scholar 

  29. J.R. Melrose, R.C. Ball, J. Rheol. 48, 937 (2004).

    Article  ADS  Google Scholar 

  30. C.W. Beenakker, J. Chem. Phys. 85, 1581 (1986).

    Article  ADS  Google Scholar 

  31. R.F. Probstein, Physicochemical Hydrodynamics: An Introduction, 2nd edition (John Wiley & Sons, New York, 2003).

    Google Scholar 

  32. F. Booth, J. Chem. Phys. 22, 1956 (1954).

    Article  ADS  Google Scholar 

  33. H. Ohshima, T.W. Healy, L.R. White, R.W. O’Brien, J. Chem. Soc. Faraday Trans. 2 80, 1299 (1984).

    Article  Google Scholar 

  34. J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989).

    Article  ADS  Google Scholar 

  35. D. Long, A. Ajdari, Eur. Phys. J. E 4, 29 (2001).

    Article  Google Scholar 

  36. K. Kim, Y. Nakayama, R. Yamamoto, Phys. Rev. Lett. 96, 208302 (2006).

    Google Scholar 

  37. H. Ohshima, T.W. Healy, L.R. White, J. Colloid Interface Sci. 90, 17 (1982).

    Article  Google Scholar 

  38. R. Yamamoto, Phys. Rev. Lett. 87, 075502 (2001).

    Google Scholar 

  39. K. Kim, R. Yamamoto, Macromol. Theory Simul. 14, 278 (2005).

    Article  Google Scholar 

  40. T. Iwashita, Y. Nakayama, R. Yamamoto, J. Phys. Soc. Jpn. 77 (2008) in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Nakayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, Y., Kim, K. & Yamamoto, R. Simulating (electro)hydrodynamic effects in colloidal dispersions: Smoothed profile method. Eur. Phys. J. E 26, 361–368 (2008). https://doi.org/10.1140/epje/i2007-10332-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10332-y

PACS

Navigation